Sanskaram University, Jhajjar (Haryana)

Curriculum and Syllabi

(Based upon CBCS, LOCF and NEP-2020)

M.Sc. Physics

DEPARTMENT OF PHYSICS

2024-26

Programme Outcomes (POs)

Students enrolled in the Master's Programmes offered by the Departments under the School of Basic Sciences will have the opportunity to learn and master the following components in addition to attain important essential skills and abilities:

PO-No.	Component	Outcomes					
PO-1	Basic Knowledge	Capable of delivering basic disciplinary knowledge gained					
		during the programme.					
PO-2	In-depth Knowledge	Capable of describing advanced knowledge gained during					
		the programme.					
PO-3	Critical thinking and	Capable of analyzing the results critically and applying					
	Problem Solving	acquired knowledge to solve the problems.					
	abilities						
PO-4	Creativity and	Capable to identify, formulate, investigate and analyze the					
	innovation	scientific problems and innovatively to design and create					
		products and solutions to real life problems.					
PO-5	Research aptitude and	Ability to develop a research aptitude and apply knowledge					
	global competency	to find the solution of burning research problems in the					
		concerned and associated fields at global					
		level.					
PO-6	Holistic and	Ability to gain knowledge with the holistic and					
	multidisciplinary	multidisciplinary approach across the fields.					
	education						
PO-7	Skills enhancement	Learn specific sets of disciplinary or multidisciplinary					
		skills and advanced techniques and apply them for					
		betterment of mankind.					
PO-8	Leadership and	Ability to learn and work in a group and capable of					
	Teamwork abilities	leading a team even.					
PO-9	Environmental and	Learn important aspects associated with environmental and					
	human health	human health. Ability to develop eco-friendly technologies.					
	awareness						
PO-10	Ethical thinking and	Inculcate the professional and ethical attitude and ability to					
	Social awareness	relate with social problems.					
PO-11	lifelong learning	Ability to learn lifelong learning skills which are important					
	skills and	to provide better opportunities and improve quality of life.					
	Entrepreneurship	Capable to establish independent startup/innovation center					
		etc.					

Programme Specific Outcomes (PSOs)

The post graduates shall be able to realize the following specific outcomes by the end of program studies:

Number	Programme Specific Outcomes
PSO-1	Identify, formulate, and solve Physics problems
PSO-2	Design and conduct experiments, as well as to analyze and interpret data
PSO-3	Apply knowledge of Physics in a different stream of science and to communicate effectively.
PSO-4	Ability to use the techniques, skills, and modern physical tools in real world application.
PSO-5	Engage in life-long learning and will have recognition.

Structure Of Master's Course

Total Credits of M.Sc. Physics : 96

Types of Courses	Nature	Total	%
		Credits	
Core Courses(DSC)	Compulsory	60	62.5
Elective Courses (EC)	Discipline Specific Elective Courses (DSE)	16	16.7
	Discipline Specific Skill Based Courses (DSSB)	12	12.5
	Generic Elective Courses (GE)	8	8.3

Semester-Wise Courses & Credit Distribution

Semester-I

Sr. No.	Course Code	Course Title	Р	Hours / Week	Total Credits		
Disc	cipline Specific Core	(DSC) Courses					
1	021301001	Mathematical Methods in Physics – I (DSC-1)	3	1	0	4	4
2	021301002	Classical Mechanics (DSC-2)	3	1	0	4	4
3	021301003	Quantum Mechanics – I (DSC-3)	3	1	0	4	4
4	021301004Semiconductor Devices (DSC4)		3	1	0	4	4
5	021301005	Laboratory-I (DSC-5)	0	0	12	12	6
Ge	neric Elective (GE)	Courses (for students of Ph	nysics	Depa	rtmer	nt)	
6	(GE-1) To be op	pted from another department or from	m SWA	AYAM		4	4
Ge	neric Elective (GE)	Courses (for students of ot	her D	eparti	nents)	
7	021301006	Modern Optics	3	1	0	4	4
8	021301007	Renewable Energy Resources	4	0	0	4	4
						Total C	Credits - 26

Semester- II

Sr. No.	Course Code	Course Title	L	Т	Р	Hours / Week	Total Credits
Disc	cipline Specific Cor	e (DSC) Courses					

1	021302001	Statistical Mechanics (DSC-6)	3	1	0	4	4
2	021302002	Classical Electrodynamics (DSC- 7)	3	1	0	4	4
3	021302003	Mathematical Methods in Physics- II (DSC-8)	3	1	0	4	4
4	021302004	Laboratory II (DSC-9)	0	0	12	12	6
Disc	vipline Specific Elec	ctive (DSE) Courses (To be opte	d any	one fr	om th	e list)	
5	021302005	Quantum Mechanics – II (DSE -1)	3	1	0	4	4
6	021302006	Introduction to Astronomy and Astrophysics (DSE-2)	3	1	0	4	4
7	021302007	Fundamentals of Solar Energy (DSE-3)	3	1	0	4	4
8	Accelerator Physics (D		3	1	0	4	4
9	021302009	Radiation Physics (DSE-5)	3	1	0	4	4
Ge	neric Elective (Gl	E) Courses (for students of Pl	nysics	s Depa	rtmer	nt)	
10	(GE-2) To be	opted from another department or fro	m SW.	AYAM		4	4
Ge	neric Elective (Gl	E) Courses * (for students of	other	Depa	rtmen	its)	
11	021302010	Environmental Physics	3	1	0	4	4
12	021302011	Physics of Digital Photography	3	1	0	4	4
						Total (Credits - 26

Semester- III

Sr. No.	Course Code	Course Code Course Title		Т	Р	Hours / Week	Total Credits
Dis	cipline Specific Cor	e (DSC) Courses					
1	021303001	Atomic, Molecular Physics and Lasers (DSC-10)	3	1	0	4	4

2	021303002	Nuclear Physics (DSC-11)	3	1	0	4	4
3	021303003	Solid State Physics (DSC-12)	3	1	0	4	4
4	021303004	Laboratory-III (DSC-13)	0	0	8	8	4
5	021303005	Seminar Presentation (DSC-14)	0	2	0	2	2
6	021303006	Research and Publication Ethics (DSC-15)	2	0	0	2	2
Disc	cipline Specific Ele	ctive (DSE) Courses (To be opte	d any	one fr	om th	e list)	
7	021303007	Physics of Electronic Materials and Devices (DSE-6)	3	1	0	4	4
8	021303008	Nuclear Reactor Physics (DSE-7)	3	1	0	4	4
9	021303009	Plasma Physics and Fusion Reactor (DSE-8)	3	1	0	4	4
10	021303010	Physics of Nanomaterials (DSE-9)	3	1	0	4	4
11	021303011	General Theory of Relativity (DSE-10)	3	1	0	4	4
12	021303012	Astrophysics of Stars (DSE-11)	3	1	0	4	4
Disc	cipline Specific Ski	ll Based (DSSB) Courses (To be	opted	l any o	ne fro	m the list)
13	021303013	Characterization Techniques for Materials (DSSB-1)	3	0	2	5	4
14	021303014	Digital Electronics and Microprocessor (DSSB-2)	3	1	0	4	4
15	021303015	Computational Physics (DSSB-3)	3	0	2	5	4
16	021303016	Analog Electronics (DSSB-4)	3	1	0	4	4
						Total (Credits - 28

Semester- IV

Sr. No.	Course Code	Course Title	L	Т	Р	Hours / Week	Total Credits
------------	-------------	--------------	---	---	---	-----------------	------------------

Dise	Discipline Specific Core (DSC) Courses						
1	021304001	Major Dissertation (DSC-16)	0	0	0	16	16
		OR					
2	021304002	Major Dissertation (DSC-17)	0	0	0	4	4
Dise	cipline Specific Ele	ctive (DSE) Courses (To be opte	ed any	' two fr	om th	e list)	
3	021304003	Advanced Nuclear Physics (DSE- 12)	3	1	0	4	4
4	021304004	Particle Physics (DSE-13)	3	1	0	4	4
5	021304005	Cosmology (DSE-14)	3	1	0	4	4
6	021304006	Ferroelectricity and Magnetism (DSE-15)	3	1	0	4	4
7	021304007	Advanced Carbon Materials (DSE-16)	3	1	0	4	4
Dise	cipline Specific Ski	ll Based (DSSB) Courses (To be	opted	l any o	ne fro	m the list	;)
8	021304008	Experimental Techniques in Nuclear and Particle Physics (DSSB-5)	3	1	0	4	4
9	021304009	Astronomy Laboratory (DSSB-6)	3	1	0	4	4
10	021304010	Vacuum Science and Thin Film Technology (DSSB-7)	3	1	0	4	4
11	021304011	Introduction to Hydrogen Energy Systems (DSSB-9)	3	1	0	4	4
						Total (Credits - 16

Note:

- This GE* courses offered by the Department can only be taken by the students of other Departments. The students of the Physics Department will take GE from other Departments.
- The Department may offer more than one discipline specific elective courses (DCE) depending on specialization and strength of faculty members, and the number of students have to opt one of them for semester II. If class strength is less than 10, then that particular subject will not be offered.
- In semester III, students are required to opt two courses out of the listed Discipline Specific Elective Courses and Discipline Specific Skill Based courses. However, a course will be offered subject to the available specialization and strength of the faculty.

• In semester IV, the students have to opt two out of Discipline Specific Elective Courses and one out of Discipline Specific Skill Based courses from various options offered by the Department depending on the specialization and strength of the faculty.

OR

- Student may opt for full semester long dissertation work on the campus or outside the campus in some Laboratories/Institutes/Universities of National Importance.
- For carrying out the dissertation work outside the campus, student will have to produce an invitation/acceptance letter from external supervisor by the end of Semester III.
- Student may complete the dissertation project under the guidance of a supervisor on Sanskaram University campus.
- Student who will pursue the project outside Sanskaram University, will have one internal supervisor and one external supervisor.
- Internal supervisor will periodically interact with student and external supervisor. He/She will be responsible for internal assessment of the candidate from time to time.
- Student will be allowed to work with external supervisor at other outside institutions only after completing all the documentation process at Sanskaram University. Students have to follow the timeline strictly issued by Department from time to time.
- Department will have no financial obligation if student carries out the dissertation work outside Sanskaram University.

Course Structure

Mathematical Methods in Physics I

Scheme Version:	Name of the subject: Mathematic	L	Т	Р	С	Semester: I	Contact Hours per Week: 4			
2024-26	al Methods in Physics-I	3	1	0	4	(1 st Year)	Total Hours: 60=45+15			
Subject	Applicable to	Evaluation (Total	Internals	30 Marks	Ex	amination Du Hours	iration: 3			
Coue:	M.Sc. Physics	Marks: 100)	End Term Exams	70 Marks	Pre	Prerequisite of Course: B.Sc				
Course Description	Course DescriptionThis course has been developed to introduce students to some topics of mathematical Physics which are directly relevant in different papers of Physics course. It includes elements of matrices and group theory, introduction to tensor algebra, function of a complex variable and calculus along with an introduction to computational techniques and statistical measures used in physics Course.									
Course Objectives	 Learning Understation Getting Understation 	g about matrice anding basics o to know the sig anding Numerio	s and group f Tensors. mificance of cal methods	os f Comple s in Phys	ex algoics	ebra				
Course Outcomes	Course OutcomesAfter successful completion of the course the student will be able to do the following :• To use matrices for solving linear algebraic equations and to use group theory for understanding of crystallography.• To use tensor transformation and related algebra in physics.• To solve real definite integrals in theoretical Physics.• To find roots of a given polynomial and understand the properties of a statistical distribution of point particles.						to do the o use group rties of a			
Unit No.		Content o	f Each Un	it		Hou	rs of Each			
							Unit			

	Matrices and Group Theory :	
1	Linear vector spaces, matrix spaces, linear operators,	15
	eigenvectors and eigenvalues, matrix diagonalization, special	
	matrices. Symmetries and groups, multiplication table and	
	representations, permutation group, translation and rotation	
	groups, O(N) and U(N) groups.	

2	Tensors Analysis : Coordinate transformations, scalars, contravariant and covariant vectors, mixed and covariant tensor of second rank, addition, subtraction and contraction of tensors, quotient rule. Christoffel symbols, transformation of Christoffel symbols, Covariant differentiation, Ricci's theorem, divergence, Curl and Laplacian tensor form, Stress and strain tensors, Hook's law in tensor form.	15
3	Complex Variables : Functions of complex variable, Limits and continuity, differentiation, Analytical functions, Cauchy-Riemannn conditions, Cauchy Integral theorem, Cauchy integral formula, Derivatives of analytical functions, Liouville's theorem. Power series Taylor's theorem, Laurent's theorem. Calculus of residues–poles, essential singularities and branch points, residue theorem, Jordan's lemma, singularities on contours of integration, evaluation of definite integrals.	15
4	Computational Techniques and Probability Theory: Root of functions, interpolation, extrapolation, Integration by trapezoid and Simpson's rule, solution of first order differential equation : using Runge-Kutta method and Finite difference methods. , Preliminary Concepts : mean values, standard deviation, various moments; Random walk problem, Binomial distribution, Poisson distribution, Gaussian distributions, Lorentz distribution, Central Limit Theorem.	15
	Theorem. TEXT BOOKS	

- 1. Fredrick W. Byron and Robert W. Fuller, Mathematics of Classical and Quantum Physics, Dover Publications, Mineola, New York, Vol 1&2, 1970.
- 2. **Merle C. Potter and Jack Goldberg**, Mathematical Methods, S.CHAND (Prentice Hall of India), New Delhi, 2nd Edition, 1987.
- 3. George Arfken and Hans J Weber, Mathematical Methods for Physicists, Elsevier Academic Press. Cambridge, Massachusetts, 7th Edition 2012
- 4. L. A. Pipe, Applied Mathematics for Engineers and Physicists, Dover Publication Inc., Mineola, New York 3rd Edition 2014.
- 5. **E. Kreyszig**, Advanced Engineering Mathematics, John Wiley & Sons. Hoboken, New Jersey (United States), 10th Edition, 2015.
- 6. **K. F. Riley, M.P. Hobson, and S. J. Bence,** Mathematical methods for Physicists and Engineers, S. CHAND (Cambridge University Press), New Delhi, 3rd edition, 2018.
- 7. **V. BALAKRISHNAN**, Mathematical Physics with Applications, Problems and Solutions, Ane Books, New Delhi, 1st Edition, 2018

Classical Mechanics

Scheme	Name of the subject:	L	Т	Р	С	Semester:	Contact hours per week: 3+1		
Version: 2024-26	Classi cal Mecha nics	3	1	0	4	I (1 st Year)	Total Hours: 60=45+15		
Subject Code:	Applicable to	Evaluation (Total	Internals	30 Marks	Exar	Examination Duration:3			
	M.Sc. Physics	Marks: 100)	End Term Exams	70 Marks	Prerequisite of Course: B.Sc.				
Course Description	This course aims at providing knowledge of Classical Mechanics to the students so that they are able to understand the Lagrangian & Hamiltonian mechanics of systems of particles interacting with various forces and also their applications in various branches of Physics.								
Course Objectives	 To understand the fundamentals of classical mechanics To get familiar with various classical mechanical problems related to Lagr & Hamiltonian formulations To aware the students about applications of classical mechanics in various science branches 						to Lagrangian various		

	 After completion of this course, students would be able to: Understand the mechanics of system of particles, D'Alembert's principle, Lagrangian mechanics, & Euler's equation of motion. Learn about Hamiltonian formulation. Hamilton's Equations of Motion and Principle.
Course	 Iterr Canonical Transformations & Hamilton-Jacobi theory.
Outcomes	• Learn about Rigid body dynamics including problems.
	• Understand the two body central force problem and its related aspects.

	COURSE SYLLABUS	
Unit No.	Content of Each Unit	Hours of
		Each
		Unit
1	Lagrangian Formulation and Hamilton's Principles: Mechanics of one and many particle systems, Virtual work, Constraints of motion, generalized coordinates, D'Alembert's Principle and Euler-Lagrange Equations of motion, velocity dependent potentials, dissipation function, simple applications of Lagrangian formulation. Calculus of Variations, Hamilton's Principle, Derivation of Lagrange's equation from Hamilton's principle, extension to nonholonomic systems, advantages of variational principle formulation, Symmetry Properties of space and time, Conservation theorems	15
2	Hamilton's Equations of Motion and Small Oscillations: Generalized momentum, Legendre transformation and the Hamilton's Equations of Motion, simple applications of Hamiltonian formulation, cyclic coordinates, Routh's procedure, Hamiltonian Formulation of Relativistic Mechanics, Derivation of Hamilton's canonical equation from Hamilton's variational principle. The principle of least action. Stable and unstable equilibria; Theory of small oscillations in Lagrangian formulation, normal coordinates and its applications, Free vibrations of linear triatomic oscillator.	15

	1						
3	Canonical Transformation and Hamilton-Jacobi Theory: Canonical transformation and its examples, integral invariant of Poincare, Lagrange's and Poisson brackets as canonical invariants, equation of motion in Poisson bracket formulation, Angular momentum, Infinitesimal contact transformation and generators of symmetry, Liouville's theorem. Hamilton- Jacobi equation for Principal and characteristic function, Harmonic Oscillator Problem, Action angle variable: adiabatic invariance of action variable.	15					
	Two-body Central Force problem and Rigid Body Motion:						
4	Two body central force problem: Reduction to equivalent one body problem, equation of motion and first integrals, Equivalent 1D problem, classification of orbits, Differential equation for the orbit, Kepler's problem, Scattering cross section, Rutherford's Formula. Orthogonal transformation, Euler equations, Eulerian angles ad Euler's Theorem, Infinitesimal rotation, Rate of change of a vector, Coriolis force, Angular Momentum and Kinetic energy of a rigid body, moment of Inertia, Eigenvalues of the inertia tensor.	15					
	TEXT BOOKS						
1. A. Som	nerfeld, Mechanics, Academic Press, United States, 1 st Edition, 1952.						
2. I. Perci	val and D. Richards, Introduction to Dynamics, Cambridge Universit	y Press, 1 st					
Edition I	982. L. Creaner, Charles I. Machanica anida Marsha Sanina an Camarana 20d Edit	· 2000					
5. Konald	L. Greene, Classical Mechanics with Maple, Springer, Germany, 2 ⁻² Edit	1011, 2000.					
4. Herbert Goldstein, Unarles Poole, John Saiko, Classical Mechanics, Pearson Education LIK 2 rd Edition 2011							
	ndou and F M Lifshitz Mechanics Butterworth-Heinemann UK 2 nd F	Edition					
2012	nuau anu E.M. Ensintz, meenames, Butterworth-mememanil, OK, 2 I	Luiuon,					
$\begin{array}{c} 2012. \\ 6 \mathbf{N} \mathbf{C} \mathbf{R}_{9} \end{array}$	na and P.S. Joag. Classical Mechanics. Tata McGraw Hill New Delbi 1	st Edition					
2015	ina and 1 .5. 50ag, Classical Mechanics, Tata Mechaw IIII, New Delli, I	Lunion,					
2013.							

QUANTUM MECHANICS - I

Scheme Version:	Name of the subject:	L	Т	Р	С	Semester:	Contact hours per week: 3+1
2024-26	Quantum – Mechanics –I	3	1	0	4		Total Hours: 60=45+15
Subject Code:	Applicable to Programs:	Evaluation (Total	Internals	30 Marks	Exan	amination Duration: 3 h	
	M.Sc. Physics	Marks : 100)	End Term Exams	70 Marks	Prerequisite of Course: Graduation Level Quantum Mechanics		
Course Description	This course is de comprehensive a physics, nuclear	esigned for fund and rich applical physics, space	amental k pility in co science, a	cnowledge o ondensed m nd chemistr	of quantu atter phy ry.	um mechanic vsics, atomic	s, which has and molecular
Course Objectives	 To understand the fundamentals of quantum mechanics To make familiar with various quantum mechanical problems related to vector space, eigenvalue, Schrödinger equation, free particle, harmonic oscillator, potential barrier and well, angular momenta etc. To aware the students about applications of quantum mechanics in various science branches 						

	After competition of this course, students will be able						
Course Outcomes	• To explain the theories and phenomena of vector space, operators, Dirac's notations, matrices, and commutators which are very helpful in solving the various quantum mechanics problems						
	• To understand the uncertainty relation between two arbitrary ope	erators					
	 To distinguish the actual meaning of time independent a Schrodinger's equations To illustrate Ehrenfest theorem, Poisson Brackets, wave pack functions position and momentum space 						
	• To analyze the energy eigenvalues and wave functions of harmo and finite square wells, free particle, and hydrogen atom	nic oscillator, infinite					
	• To determine the transmission and reflection coefficients of potential barrier and potential step, and delta function well						
	• To recognize the importance of angular momentum and its applications in quantum mechanics						
	• To explain the physics behind the addition of angular momenta						
	COURSE SYLLABUS						
Unit No.	Content of Each Unit	Hours of Each Unit					
	Mathematical Tools of Quantum Mechanics:						
1	Vector Spaces, Linear Independence, Bases, Dimensionality, Linear Transformations, Similarity Transformations, Eigen Values and Eigen Vectors, Inner Product, Orthogonality and Completeness, Hilbert Space, Hermitian and Unitary Operators, Orthonormality, Completeness and Closure, Dirac's Bra and Ket Notation, Matrix Representation and Change of Basis, Operators and Observables, Commutation Relations, Uncertainty principle for two arbitrary Operators.	15					
	Operators.						

2			Quantum Dynamics: Time Evolution Operator, Stationary States, Schrodinger Equation, The Schrodinger versus the Heisenberg Picture, The Infinite Square Well and the Simple Harmonic Oscillator: Energy Eigenvalues and Energy Eigenstates, Connecting Quantum to Classical Mechanics: The Ehrenfest Theorem; Poisson Brackets and Commutators, Wave Packets, Wave Functions in Position and Momentum Space.	15
			Quantum Mechanics in One and Three Dimensions:	
		3	Properties of One Dimensional Motion: Bound States and Scattering States, The Free Particle, The Potential Step, The Potential Barrier and Well, The Finite Square Well, The Delta- Function Well, Three Dimension Problems: Hydrogen Atom.	15
ľ			Angular Momenta and Approximate Analysis:	
		4	Orbital angular momentum, General Formalism of Angular Momentum, Eigenfunctions and Eigenvalues of Orbital Angular Momentum, Addition of Angular Momenta, Spin Angular Momentum: Stern-Gerlach Experiment; Pauli Matrices and Spinors, Clebsch-Gordan Coefficients.	15
			TEXT BOOKS	
	1.	L. D. La	andau and E.M. Lifshitz, Quantum Mechanics, Butterworth Heine	emann, The
		Netherlar	nds, 3 rd Edition, 1981.	
	2.	P. A. M. 1988.	Dirac , The Principles of Quantum Mechanics, Oxford University Pres	ss, UK, 4 th Edition,
	3.	R. Shank	xar , Principles of Quantum Mechanics, Springer, Germany, 2 nd Edition	n, 1994.
	4.	N. Zettili	i, Quantum Mechanics: Concepts and Applications, Wiley, USA, 2 nd E	dition, 2009.
	5.			
	6. -	L. I. Schi	iff, Quantum Mechanics, McGraw Hill Education, USA, 4 th Edition, 2 th	017.
	7.	D. J. Gri Edition, 2	ffiths , Introduction to Quantum Mechanics, Cambridge University Pr 2018.	ess, UK, 3 ^{ra}
	8.	C. Coher Tools, an	n-Tannoudji, B. Diu, and F. Laloe , Quantum Mechanics, Volume 1: d Applications, Wiley, USA, 2 nd Edition, 2019.	Basic Concepts,

Semiconductor Devices

Scheme Version:	Name of the subject:	L	Т	Р	С	Semester:	Contact hours per week: 3+1	
2024-26	Semiconductor Devices	3	1	0	4	I (1 st Year)	Total Hours: 60=45+15	
Subject Code:	Applicable to	Evaluation (Total	Internals	30 Marks	Exan	Examination Duration: 3 hours		
	M.Sc. Physics	(10ta) Marks: 100)	End Term Exams	70 Marks	Prerequisite of Course: None			
Course Description	The objective of the course on Semiconductor Devices is to introduce semiconductor physics, physical principle of devices and their basic applications.							
Course Objective	An understandinAn understandinAn understandin	ng of basic sem ng of the applic ng of the applic	iconduc ation of ation of	nductor device physics on of Field-Effect Transistors. on of Bipolar Junction Transistors.				
Course Outcomes	 On completion of the course, student would be able: To understand the basic properties of semiconductors including the band gap, charge carrier concentration, doping and charge carrier injection/excitation. To understand how to find the Fermi energy level and carrier density in n- type and p-type semiconductors. To understand basic properties of PN junctions and Metal-Semiconductor junction. To understand the working, design and applications of various semiconducting devices like rectifiers, clippers, LED, Solar cells. To understand the working, design, and applications of BJTs and FETs. 							

	COURSE SYLLABUS	
Unit No.	Content of Each Unit	Hours of Each Unit
1	Semiconductors: Energy Band and Charge Carriers: Energy bands in semiconductors, Types of semiconductors: Intrinsic and extrinsic materials. Carrier concentration: Fermi Level, Electron and hole concentration in equilibrium, Temperature dependence of carrier concentration, Compensation and charge neutrality. Conductivity and mobility: Effect of temperature, Doping and high electric field, Hall Effect.	15
2	Junctions: p-n junction and contact potential, Fermi levels, Space charge, Reverse and Forward bias, Zener and Avalanche breakdown. Capacitance of p-n junction, Diode Applications: Load-Line Analysis, Series Diode Configurations, Parallel and Series-Parallel Configurations (AND/OR Gates), Half-Wave Rectification, Full- Wave Rectification, Clippers, Clampers. Network with a DC and AC Source, LED, Solar cell and photodetectors, Metal-Semiconductor contact: Rectifying contact and Ohmic contact.	15
3	 Bipolar Junction Transistors (BJT): Fundamentals of BJT, BJT Operation: Common-Base Configuration, Common-Emitter Configuration, Common-Collector Configuration, Limits of Operation, Minority carrier distribution, BJT DC Biasing: Operating Point, Fixed-Bias Configuration, Emitter-Bias Configuration, Voltage-Divider Bias Configuration, Collector Feedback Configuration, Emitter-Follower Configuration, Field Effect Transistors: JEFT: Construction and Characteristics of JFETS, Transfer Characteristics, MOSFET: Depletion-Type MOSFET, Enhancement-Type MOSFET, Transfer Characteristics. 	15
4	Operational Amplifiers: Differential amplifier (DA)- Basic circuit of differential amplifier Operation of differential amplifier: Common-mode rejection ratio	

		(CMRR), DC analysis of differential, Applications of OP-amp:				
		Inverting amplifier-Input and impedance of inverting amplifier,				
		Noninverting amplifier-Voltage follower, Effect of negative				
		feedback on OP-amp in feedback circuits, Summing amplifiers-				
		Applications of summing amp, OP-amp as integrators and				
		differentiators.				
		IEAI BOOKS				
ľ	1.	J.J. Cathey, Schaum's Outline of Electronic Devices and Circuits, McGraw Hill, New				
		York 2nd Edition 2002				
	2	B. Streetman and S. Baneriee Solid State Electronics Prentice Hall India New Delhi 6th				
		Edition, 2006.				
	3.	Millman and Halkias, Integrated Electronics, McGraw Hill, New York, 2nd Edition 2009.				
	4.	A.P. Malvino, Electronic Principles, McGraw, New Delhi, New York 7th, Edition, 2009.				
	5.	5. J.H. Moore, C.C. Davis and M.A. Coplan, Building Scientific Apparatus, Addison				
		Wesley, United States, 4th Edition 2009.				
	6.	R.L. Boylestad and L. Nashelsky , Electronics Devices and Circuit Theory, Prentice Hall				
		of India, New Delhi, 11th Edition, 2013.				
	7.	P. Horowitz and W. Hill , The Art of Electronics, Cambridge University Press, 3rd Edition, 2015.				

LABORATORY I

Scheme Version:	Name of the	L	Т	Р	С	Semester:	Contact Hours per Week: 12	
2024-26	subject: Laboratory I	0	0	12	6	I (1 st Year)	Total Hours: 180	
Subject Code:	Applicable to Programs:	Evaluation (Total	Internals	30 Marks	Exa	Examination Duration: 3 hour		
	M.Sc. Physics	Marks: 100)	End Term Exams	70 Marks	Pre	ourse: None		
Course Description	The objective of the lab 1 is to train students to perform various experiments associated with Electronics, Quantum physics, Waves mechanics and Spectroscopy. Students assigned the general laboratory work will perform at least ten (10) experiments of the above mentioned list of Physics experiments and further 8 experiments from the C programming section Experiments of equal standard may be added. Workshop soldering and designing of experiments should be included							
Course Objectives	 To give hands on experience to students for generating magnetic field and measurement of various parameters. To teach how temperature controlled oven works To take measurements of current and voltage using various equipment 							

	After competition of this course, the students will be able to
	• learn various Physics aspects by performing the experiments related to electronic devices, atomic and molecular physics, light wave, sound waves etc.
Course	Learn Error analysis
Outcomes	• Use excel for plotting graphs
	• do C programming

	COURSE SYLLABUS	
Unit No.	Content of Each Unit	Hours of Each Unit
1	 Hall Effect Four Probe Method to find band gap of semiconductor Electron Spin Resonance Frank-Hertz experiment PN Junction characteristics Solar cell characteristics Solar cell characteristics Velocity of ultrasonic wave in liquids Characteristics of MOSFET Diode as voltage regulator Ionization potential of mercury Planck's constant using LED Law of Malus Zener diode characteristics 	150
2	 Introduction to C Programming: Write a Program to calculate and display the volume of a CUBE having its height, width and depth. Write a C program to perform addition, subtraction, division and multiplication of two numbers Write a program to input two numbers and display the maximum number. Write a program to find the largest and smallest among three entered numbers and also display whether the identified largest/smallest number is even or odd. Write a program to find the roots of quadratic equation. Write a program to check whether the entered year is leap year or not (a year is leap if it is divisible by 4 and divisible by 100 or 400.) 	30

	7. Write a program to find the factorial of a number.
	8. Write a program to check number is Armstrong or not.
	9. Write a program to find GCD (greatest common
	divisor or HCF) and LCM (least common multiple) of
	two numbers
	Write a program to generate Fibonacci series.
	TEXT BOOKS
1. Worsnop an	nd Flint, Experimental Physics, Little hampton Book Services Ltd, United Kingdom,
9th Edition	, 1951. 1963 - L. Nanalitana, Europinanta in Madam Physica, Academia Press, Cambridge
Z. C. Melissif Massachus	etts, 2 nd Edition, 2003.
3. Lab manual	s, prepared by faculty of the Department of Physics, 2018.

L

Modern Optics

Scheme Version:	Name of the subject:	L	Т	Р	С	Semester:	Contact hours per week: 3+1	
2024-26	Modern Optics	3	1	0	4	I (1 st Year)	Total Hours: 60=45+15	
Subject Code:	Applicable to Programs:	Evaluation (Total	Internals	30 Marks	Exan	Examination Duration: 3 hours Prerequisite of Course: B.Sc. with Physics		
	M.Sc. Physics	Marks : 100)	End Term Exams	70 Marks	Prer			
Course Description	The course has Holography, or	focus on the Gotical fiber, liqu	eometrical iid crystals	and wa , LED a	ve optic ind Phot	e optics, thin films, nd Photonic band gap crystals.		
Course Objectives	 To understand the fundamentals of optics. To impart knowledge about different physical phenomena. To undate the students with the latest technologies. 							
	After completion	on of this cours	e, students	would l	be able t	to:		
	• Understand	the various ph	ysical pher	nomena	& their	real life app	lications.	
Course	• Learn about	t the wave option	es and hold	ography.				
Outcomes	• Get knowle	dge about the b	basics of La	asers.				
	• Learn about	t the fiber optic	s & LED.					
		COURS	E SYLLAB	SUS		1		
Unit No.		Content o	f Each Uni	t		H	ours of Each Unit	

	An overview of Geometrical and Wave Optics: Laws of Reflection, Refraction, Total Internal Reflection; Ideas of	15
1	Interference, Diffraction, Polarization, Dispersion.	15
	Fresnel Relations:	
2	Conductors, Thin Films: Reflection Model, Matrix Formalism, Coating Design, Fourier Optics: Wave Propagation, Fraunhofer	15
	Diffraction, Fresnel Diffraction, Spatial Filtering, Holography and Holograms.	
	Coherence, Interference and Visibility, Laser Physics:	
3	Overview, Gain Saturation, Light-Atom Interactions, Optical Gain and Pumping Schemes, Output Characteristics, Light Shifts and Optical Forces, Atom-Photon interactions.	15
	Fiber Optics:	
4	Mode Analysis, Single mode and multimode optical fiber, Loss and	15
	Introduction of LED.	
	TEXT BOOKS	
1. 1. A. E. Sieg	man. Lasers, University Science Book, USA, Revised Edition, 1986.	
2. G. R. Fowler	s, Introduction to Modern Optics, Dover Publication, USA, 2 nd Edition	, 1989.
3. J. T. Verdey	ren, Laser Electronics, Prentice-Hall, India, New Delhi, 3 rd Edition, 199	95.
4. E. Hecht, Op	ptics, Addison Wesley, USA, 4 th Edition, 2001.	
5. Pedrotti,Intr	roduction to Optics, Pearson UK, 3 rd Edition, 2006.	and F 1' 2012
0. B. E. A. Sale	en and NI. C. Teich, Fundamentals of Photonics, Wiley, United States,	2 ⁴⁴ Edition, 2012.
7. A. Gliatak,	Opues, rata mediaw-rinn, new Denn, 0 Euruon, 2017.	

Scheme Version:	Name of the Subject:	L	Т	Р	С	Semester :	Contact hours per week: 3+1
2024-26	Renewable Energy Resources	3	1	0	4	I (1 st Year)	Total Hours: 60=45+15
Subject Code:	Applicable to	Evaluation (Total	Internals	30 Marks	Ex	amination D hours	uration: 3
	M.Sc. Physics	(100a) Marks): 100	End Term Exams	70 Marks	Pr 1(e-requisite o)+2 with Non-	f course: -Medical
Course Description	To introduce the patter sources of energy and	ern of fuel cons l modern applic	umption, ations.	energy d	emand	, various rene	wable
Course Objectives	 The course treats generation using di background. On completion of this 	the basics of v ifferent method	arious rei s; it is sui t will lear	newable table for	energy studer	resources an interces from interces	nd energy disciplinary
Course Outcome	 The Course will c of energy technologies The Course will b This will enable t systems for differ It creates awarened technologies and To teach fundame processes, storage important elective It increases the po hydrogen product 40% energy is bei To give an idea al processing and ut comprehensive k 	reate awareness ogies and provi pe introducing t hem to understa ent applications ess among stude provide adequa entals of hydrog e, utilization, ar e subjects. otential for job ion & its infras ing consumed b bout different b ilization for rec nowledge of ho	s among st de adequa he studen and the re s. ents about the inputs gen energy nd safety t opportuni tructure d by automo- iomass ar overy of e	tudents al ate inputs ts to all t quirement t wind an on a vari v as energ hat is new levelopm otive sect nd nuclea energy ar are utili	bout N s on a v he asp nts for ad geot ety of gy syste cessary atomot eent rel ors. ar as er ad othe ized fo	on-Conventio variety of issu ects of PV tec PV materials hermal energy issues. ems, production y for taking so ive industries ated sectors a hergy source a pr valuable pro- pr recovery of	onal sources les. chnology. and PV y on ome and is about and their oducts. A f value

RENEWABLE ENERGY RESOURCES

	would be immensely useful for the students from all Fields.	
	COURSE SYLLABUS	
Unit No.	Content of Each Unit	Hours of Each Unit
1.	 Energy Scenario and Solar Energy: Global and Indian Energy Scenario and Energy Policy, Commercial and Noncommercial Forms of Energy, Fossil Fuels, Renewable Sources, Impact of Energy Systems on Environment, Need for use of New and Renewable Energy Sources, Solar Thermal and Solar Photovoltaic Energy. 	15
2.	Wind and Geothermal Energy: Wind Energy Basics- Global circulation, Forces influencing Wind - Pressure gradient force and Coriolis force, Local and Regional Wind systems, Geothermal Tidal and Wave Energy, Geothermal regions, 	15
3.	Hydrogen Energy and Fuel cells:Hydrogen Energy-production and storage, Production Processes:Thermo chemical Water Splitting, Gasification, Pyrolysis methods.Electrochemical, Electrolysis, Photo electro chemical. General storagemethods, compressed storage, Zeolites, Metal hydride storage,chemical hydride storage and cryogenic storage. Fuel cells-Thermodynamics and performance of Fuel Cells, Its working,construction,classifications and applications.	15
4.	Biomass and Nuclear Energy: Biomass Energy and application, Techniques for biomass assessment, Thermochemical conversion of biomass, Mini/micro hydro power: classification of hydropower schemes, Nuclear Energy: Fission, Fusion, Different type of nuclear reactors, Nuclear waste disposal and environment measures.	15
	TEXT BOOKS	
 Solar E Garg J. Garg J. Co. Ltc Xiangu Fundar J Twide 2006. KC Kh EH Lys 	Energy: S. P. Sukhatme, (Tata McGraw Hill). H.P.Prakash .J, "Solar energy fundamentals and applications", Tata McGraw I d, 2006. In Li, Principles of Fuel Cells, Taylor and Francis, 2005. In entals of Renewable Energy Processes, Aldo Vieira da Rosa, Elsevier Acade ell and T Weir, Renewable Energy Resources, Taylor and Francis (Ed), New andelwal, SS Mahdi, Biogas Technology - A Practical Handbook, Tata McGr sen, Introduction to Wind Energy, CWD Report 82-1, Consultancy Services	Hill publishing emic Press. York, USA, raw Hill, 1986. Wind

Energy Developing Countries, May 1983.

STATISTICAL MECHANICS

Scheme Version:	Name of the subject: Statistical	L	Т	Р	С	Semester:	Contact hours per week: 3+1
2024-26	Mechanics	3	1	0	4	II (1 st Year)	Total Hours: 60=45+15
	Applicable to	Evaluation	Internals	30 Marks	Exan	nination Dura	ntion: 3 hours
Subject Code:	Programs: M.Sc. Physics	(Total Marks: 100)	End Term Exams	70 Marks	P Gra Mec	rerequisite of aduation Level chanics and Ma Physics	Course: l Quantum athematical
Course Description	This course is do which have broa physics, classica	eveloped for und ad and rich appli al mechanics and	erstandin cability ii l electrod	g of thermo n quantum n ynamics.	dynamio mechani	es and statistic cs, condensed	al mechanics, matter
Course Objectives	 To understand the fundamentals of thermodynamics and statistical mechanics To make familiar with various thermodynamical and statistical mechanics terms s entropy, free energy, phase space, statistical ensembles, Bose-Einsteinstatistics, Dirac statistics etc. To able the students for solve the problems related to thermodynamics and statist physics 		cs erms such as stics, Fermi- tatistical				
	At the end of the explain	the various ther	dents will nodynam	l be able to lical quantit	le to		ations
Course Outcomes	apply thdescribe	e thermodynami	ics in idea	al gas, mag	netic and describ	l dielectric ma e systems of pa	terials

• evaluate the formulae of random walk and diffusion equation
 compare microstates, macrostates, and statistical ensembles understand the theories and mathematical approaches of statistical ensembles, equipartition theorem and Maxwell-Boltzmann statistics
 illustatre the fundamental concepts of Bose-Einstein and Fermi-Dirac Statistics calculate the problems related to Bosons and Fermions

	COURSE SYLLABUS	
Unit No.	Content of Each Unit	Hours of Each Unit
1	Review of Thermodynamics: Extensive and intensive variables, laws of thermodynamics, Entropy for Different Systems, Gibbs Paradox, Boltzmann Relation for Entropy, Legendre Transformations and Thermodynamic Potentials, Chemical Potential, Free Energy and Its Connection with Thermodynamic Quantities, Maxwell Relations, Applications of Thermodynamics to (a) Ideal Gas, (b) Magnetic Material, and (c) Dielectric Material.	15
2	Statistical Methods and Description of Systems of Particles : Binomial distribution, Poisson distribution, Gaussian distributions, Central Limit Theorem, Random Walk and Brownian Motion, Diffusion Equation, Phase Space, Liouville's Theorem, Phase Equilibrium, Microstates and Macrostates, Statistical Ensembles, Irreversibility and the Attainment of Equilibrium	15
3	Classical Statistical Mechanics: Micro-Canonical Ensemble, Canonical Ensemble: Derivation of Partition Function and Thermodynamic Quantities; Mean Values and Fluctuations, Grand Canonical Ensemble: Gibbs Factor; Gibbs Distribution; Derivation of Partition Function and Thermodynamic Quantities; Fluctuations in the Number of Particles, Applications of Canonical and Grand Canonical Ensembles, Equipartition Theorem and It's Applications, Maxwell-Boltzmann Statistics.	15

	Quantum Statistical Mechanics:	
4		15
	Bosons: Occupation Number; Bose-Einstein Statistics; Debye	
	Theory of Specific Heat; Grand partition function For Ideal Bose	

Gas;	Black-Body	Radiation;	Bose-Einstein	Condensation,
Ferm	ions: Occupatio	n Number; Fe	ermi-Dirac Statist	ics; IdealFermi
gas,	Pauli Parama	gnetism, Fir	st and Second	Order Phase
Trans	itions, Ising Mo	del, Phase Eq	uilibria: Equilibri	ium Conditions;
Simp	le Phase Diagra	ms; Clausius-	Clapeyron Equat	tion.

TEXT BOOKS

- 1. F. Reif, Fundamental of Statistical and Thermal Physics, McGraw-Hill, USA, 1965.
- 2. L. D. Landau and E. M. Lifshitz, Statistical Physics, UK, 3rd Edition, 1980.
- 3. D. V. Schroeder, An Introduction to Thermal Physics, Addison Wesley Longman, UK, 2000.
- 4. **J. P. Sethna**, Statistical Mechanics: Entropy, Order Parameters and Complexity, Oxford University Press, UK, 2006.
- 5. M. Kardar, Statistical Physics of Particles, Cambridge University Press, UK, 2007.
- 6. **H. Gould and J. Tobochnik**, Statistical and Thermal Physics: With Computer Applications, Princeton University Press, USA, 2010.
- 7. **K. Huang**, Statistical Mechanics, Wiley, India, 2nd Edition, 2011.
- 8. R. K. Pathria and P. D. Beale, Statistical Mechanics, Academic Press, USA, 2011.

Classical Electrodynamics

Scheme Version	Name of the subject:	L	Т	Р	С	Semester:	Contact Hours per Week: 4	
2024-25	Classical Electrodynami c s	3	1	0	4	II (1 st Year)	Total Hours: 60=45+15	
Subject Code:	Applicable to	Evaluation (Total	Internals	30 Marks	Exan	nination Du	ration: 3 hours	
	Programs: M.Sc.Physics	Marks: 100)	End Term Fyame	70 Marks	Pre	•equisite of Course: None		
Course Description	This course is designed for fundamental knowledge of basic electrodynamics and it's applications to various phenomena.							
Course Objective	 To evaluate fields and forces in Electrodynamics and Magneto dynamics using basic scientific method. To provide concepts of relativistic electrodynamics and its applications in branches of Physical Sciences. 							
Course Outcomes	 On completion of the course, student would be able: To understand the basics of electrostatics To use of Maxwell equations in analyzing the electromagnetic field due to time varying charge and current distribution. To describe the nature of electromagnetic wave and its propagation through different media and interfaces. 							

	in which the ate. formulation of s undergoing localized time	
	COURSE SYLLABUS	
Unit No.	Content of Each Unit	Hours of Each Unit
1	Electrostatics : Coulomb's law, Guass's law, Poisson's equation, Laplace equation, Green's theorem, , Dirichlet and Neumann boundary conditions, Simple boundary value problems illustrating various techniques such as method of images, separation of variables, Green's functions, Multipole expansion. Electrostatics of dielectric media, multipole expansion of energy of a charge distribution in an external field, Boundary value problems with dielectrics; molecular polarisability, Clausius Mossotti Relation, electrostatic energy in dielectric media.	15
2	Magnetostatics & Maxwell's Equations: Biot-Savart law, Ampere's Law, Vector potential, Magnetic Fields of a Localized Current Distribution, Magnetic Moment , Force and Torque on and Energy of a Localized Current Distribution in an External Magnetic Induction, Singularity in dipole field, Fermi-contact term, Macroscopic Equations, Boundary Conditions on B and H, Methods of Solving Boundary-Value Problems in Magnetostatics, Uniformly Magnetized Sphere, Magnetized Sphere in an External Field; Permanent Magnets, Magnetic Shielding, Maxwell's Displacement Current; Maxwell Equations, Vector and Scalar Potentials, Gauge transformations, Lorentz and Coulomb gauges, Hertz Potential, Time varying fields, Maxwell's equations in free space and linear isotropic media (non conducting) boundary conditions on the fields at interfaces. Poynting theorem, conservation laws for a system of charged particles and electromagnetic field,	15
3	Electromagnetic Waves: Electromagnetic waves in free space, dielectrics and conductors, skin depth, Plane waves in a non conducting media, Reflection and refraction, polarization, Fresnel's law, Total internal Reflection: Stoke's parameter, Waves in rarefied plasma (ionosphere) and cold magneto-plasma,	15

	frequency dispersion in Dielectrics, Metals and Plasmas, dielectric	
	constant and anomalous dispersion, wave propagation in Ionosphere and	
	Magnetosphere, group velocity, metallic wave guides, Energy Flow	
	and Attenuation in Waveguides, Coaxial cable, Resonant Cavities, Power	
	Losses in a Cavity; Q of a Cavity, M, propagation modes in waveguides.	
	Radiation and Relativistic Electrodynamics:	
	Field of a localized oscillating source, fields and radiation in dipole and	
	quadrupole Fields, Centre-fed Linear Antenna, Non-relativistic motion in	
	uniform constant fields, Slowly varying magnetic field : Time varying	
	magnetic field, space varying magnetisc field, Adiabatic invariance of	
4	flux through an orbit, magnetic mirroring.	15
	Lorentz Transformation, Lorentz invariance of Maxwell's equation.	
	Dynamics of charged particles in static and uniform electromagnetic	
	fields. Radiation- from moving charges and dipoles and retarded	
	potentials, Lienard-Wiechert potentials, Total power radiated by an	
	accelerated charge, Lorentz formula. Four-vectors relevant to	
	electrodynamics, electromagnetic field tensor and Maxwell's equations,	
	transformation of fields, fields of uniformly moving particles.	

TEXT BOOKS

- 1. **L.D. Landau** and E.M. Lifshitz, Classical Theory of Electrodynamics, Butterworth-Heinemann. Germany, 4thEdition, 1987.
- 2. S.P. Puri, Classical Electrodynamics, Narosa Publishing House, 2011.
- 3. Melvin Schwartz, Principles of Electrodynamics, Dover Publications, UK, 1st Edition, 1987.
- 4. Walter Greiner, Classical Electrodynamics, Springer, Germany, 1st Edition, 1998.
- 5. **J. Schwinger**, L.L. Deraad Jr, K.A. Milton, W-Y. Tsai and J. Norton, Classical Electrodynamics, WestviewPress, UK, 1998.
- 6. David J. Griffiths, Introduction to Electrodynamics, Benjamin Cummings, USA, 3rd Edition, 1999.
- 7. J.D. Jackson, Classical Electrodynamics, John Wiley & Sons, United States, 2nd Edition, 2003.
- 8. Charles A. Brau, Modern Problems in Classical Electrodynamics, Oxford University Press, 1st Edition, 2003.
- 9. L. D. Landau and E. M. Lifshitz & L. P. Pitaevskii, Electrodynamics of Continuous Media Oxford, 1st Edition,2005.
- 10. Wolfgang K. H. Panofsky and Melba Phillips, Classical Electricity and Magnetism, Dover Publications, UK,2nd Edition, 2012.
- 11. Joseph Edminister, Schaum's outline of electromagnetics, New Delhi, 2nd Edition, 2017.

Mathematical Methods in Physics-II

Scheme Version:	Name of the subject: Mathematical	L	Т	Р	С	Semester:	Contact Hours per Week: 4
2024-26	Methods in Physics-II	3	1	0	4	II (1 st Year)	Total Hours: 60=45+15
Subject	Applicable to	Evaluation (Total	Interna L	30 Mark s	Examination Duration: hours		
Code:	M.Sc. Physics	(10tai Marks: 100)	End	70 Mark s	Pr Ma	erequisite of (thematical M Physics 1	Course: ethods in [
Course Description	This course has b mathematical Phy Physics. It inclu different transfor	been developed ysics which are des Ordinary d mation methods	to intro directly ifferent s to solv	duce stud relevan ial equa re differe	dents to t in diff tion, sp ential eq	some topics of erent subjects ecial function uation.	of M.Sc. os and
Course Objectives	 To Make the students familiar with Partial and Ordinary differential equations in Physics. Power series method of their solution and different polynomials Fourier Transform and Laplace Transform as a tool to solve differential equation 						
Course Outcomes	 On completion of the course, student would be able to: to solve second order differential equation. to use the special function in Quantum mechanics and electrodynamics to perform Fourier transform on a given data set. to perform Laplace transform on a given data set. 						
Unit No.		COURSE S	Each Ui	nit		Hou	rs of Each
1	Second Order Differential Equations : Separation of variables-ordinary differential equations, singular points, series solutions leading to Legendre, Bessel, Hermite, Laguerre functions as solutions. Orthogonal properties and recurrence relations of these functions					tions, essel, gonal	<u>Unit</u> 15
2	Special function Spherical harmo Sturm -Liouvill Wronskian linear	s : nics and associ e systems an independence	iated Lo d orth and/ lin	egendre ogonal ear depe	polyno polyno ndence.	mials. mials.	15

3 Fourier Transforms: Fourier Transforms: Development of the Fourier integral from the Fourier Series, Fourier and inverse Fourier transform, Convolution theorem. Simple Applications: FTIR, Telecommunication systems, Solution of partial differential equation wave equation		15	
4 Laplace Transforms: 4 Laplace transforms and their properties, Convolution theorem, Application of Laplace transform in solving linear, differential equations with constant coefficient, with variable coefficient and linear partial differential equation.		15	
	TEXT BOOKS		
 Merle C of India) Fredrick Physics, George Academ L. A. Pi 2014. E. Krey 10th Edit K.F.Rike Enginee V Balak Ane Boo 	 C. Potter and Jack Goldberg, Mathematical Methods, S. CHARD, New Delhi, 2nd Edition, 1987. k W. Byron and Robert W. Fuller, Mathematics of Classical a Dover Publications, UK, Vol 1 &2, 1970. Arfken and Hans J Weber, Mathematical Methods for Physicic Press, Cambridge, 7th Edition, 2012. ipe, Applied Mathematics for Engineers and Physicists, Dover szig, Advanced Engineering Mathematics, John Wiley & Sons, tion, 2015, ey, M.P. Hobson, and S.J.Bence, Mathematical methods for I rs, S. CHAND (Cambridge University Press), New Delhi, 3rd Editoris, 1st Edition, 2018. 	ND (Prentice Hall and Quantum cists, Elsevier r Publication Inc. United States, Physicists and ition, 2018. and Solutions;	

LABORATORY-II

Scheme Version:	Name of the	L	Т	Р	С	Semester:	Contact Hours per Week: 12	
2024-26	subject: Laboratory-II	0	0	12	6	II (1 st Year)	Total Hours: 180	
Subject Code:	Applicable to Programs:	Evaluation (Total	Internal s	30 Marks	Exan	nination Durat	ion: 3 hours	
	M.Sc. Physics	Marks: 100)	End Term Exams	70 Marks	Prer	equisite of Cou	urse: None	
Course Description	The aim & objective of the course is to impart the practical training on various electronics devices such as; Op-Amp, Vibrators, Amplifiers, Michelson interferometer etc. Students assigned the general laboratory work will perform at least twelve (12) experiments from the above mentioned. More experiments of similar nature may be added.							
Course Objectives	 To train students for various electronics experiments and take measurements To train students on various optical instruments like Spectrometer, Michelson Interferometer To have hand on experiment for measurement of magnetoresistance and dielectric constant. 							
Course Outcomes	 After completion of this course, the students will be able to Understand spectral lines, grating spectra, and interference fringes Learn the characteristics of Op-Amp, vibrators, clipper, clampers, and DA/AD Use excel for plotting graphs 							
	 Use excel for plotting graphs Understand motion of temperature and magnetic field dependence of Hall coefficient 							

COURSE SYLLABUS					
Unit No.	Content of Each Unit	Hours of Each Unit			
1	 Study of Balmer series and Rydberg constant Op-Amp as inverting and non-inverting amplifier Op-Amp as differentiator, Integrator and Adder e/m by Thomson method Single stage RC coupled amplifier Frequency response of common emitter amplifier Frequency response of common emitter amplifier Bistable/Monostable/Astable vibrators Grating spectra Refractive index of water and oil using prism Magneto resistance Temperature dependence of Hall coefficient Digital to Analog converter, Analog to Digital converter Michelson Interferometer Faraday Effect Sclipper and clampers 	150			
2	 Root finding of a polynomial equation using numerical methods Solving first and second order differential equation numerical methods Numerical integration Generating finite and infinite series 	30			
TEXT BOOKS					
 Worsnop and Flint, Experimental Physics, Little hampton Book Services Ltd, United Kingdom, 9th Edition, 1951. A. C. Melissinos, J. Napolitano, Experiments in Modern Physics, Academic Press, Cambridge, Massachusetts, 2nd Edition, 2003. 					

3. 3. Lab manuals, prepared by faculty of the Department of Physics, 2018.

QUANTUM MECHANICS - II

Scheme Version:	Name of the subject:	L	Т	Р	С	Semester:	Contact hours per week: 3+1	
2024-26	Quantum Mechanics – II	3	1	0	4	II (1 st Year)	Total Hours: 60=45+15	
Subject Code:	Applicable to	Evaluation	Internal S	30 Marks	Exan	nination Dura	ation: 3 hours	
	Programs: M.Sc. Physics	ams:(TotalSc.Marks:ysicsTotal100)TotalYesTotalMarks:TotalYesTotalMarks:TotalYesMarksYesMarks					f Course: chanics-I	
Course Description	This course is designed to understand some advanced topics such as symmetries, identical particles, approximation methods and relativity in quantum mechanics, which has broad and rich applicability in condensed matter physics, atomic andmolecular physics, nuclear physics, space science, and chemistry.							
Course Objectives	 To make familiar with various advanced topics of quantum mechanics such as symmetries and conservation laws, fermions and bosons, time independent and time dependent perturbation theories, variational and WKB methods, scattering theory, delta function and relativistic theory To aware the students about applications of advanced phenomena of quantum mechanics in physical, mathematical and chemical sciences 							
Course Outcomes	 After completion of this course, students will be able to understand the concepts of symmetries, conservation laws, bosons and fermions in quantum mechanics apply symmetries and conservation laws in various quantum mechanical problems illustatre the time independent and time dependent perturbation theories, the variational and WKB methods describe the fine structure and Zeeman effect phenomena 							

 explain the basics of scattering theory apply the delta function's properties in various quantum mechanical problems
 understand the basics of relativistic quantum mechanics recognize the importance and applications of relativistic quantum mechanics

COURSE SYLLABUS							
Unit No.	Content of Each Unit	Hours of Each Unit					
1	Symmetries, Conservation Laws & Identical Particles Transformation in space, The Translation Operator, Translation Symmetry, Conservation Laws, Parity: Parity in One & Three Dimensions; Parity Selection Rules, Rotational Symmetry, Degeneracy, Rotational Selection Rules, Many Particle Systems, Systems of Identical Particles, The Helium Atom, The Pauli Exclusion Principle.	15					
2	Approximation Methods Time Independent Perturbation Theory: Nondegenerate Perturbation Theory; Degenerate Perturbation Theory; Fine Structure; The Zeeman Effect, The Variational Method, The WKB method, Time Dependent Perturbation Theory, Adiabatic & Sudden Approximations.	15					
3	Scattering Theory & The Delta Function Differential cross-section, scattering of a wave packet, integral equation for the scattering amplitude, Born approximation, method of partial waves, low energy scattering and bound states, resonance scattering, The Delta Function: One Dimensional Delta Function and Three Dimensional Delta Function.	15					
4	Relativistic Quantum Mechanics	15					
	Kiein-Gordon equation, Dirac equation, Probability and Current						

	Density, Plane Wave Solutions, Symmetries of the Dirac equation, Dirac's Equation for a Central Potential, Covariance of Dirac's Equation, Relativistic Hydrogen Atom Problem, The Hole Theory and Positrons.					
	TEXT BOOKS					
1.	L. D. Landau and E.M. Lifshitz , Quantum Mechanics, Butterworth Heinemann, The Netherlands, 3 rd Edition, 1981.					
2.	P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford University Press, UK, 4 th Edition, 1988.					
3.	. R. Shankar , Principles of Quantum Mechanics, Springer, Germany, 2 nd Edition, 1994.					
4.	N. Zettili, Quantum Mechanics: Concepts and Applications, Wiley, USA, 2 nd Edition, 2009.					
5.	J. J. Sakurai, Modern Quantum Mechanics, Pearson, India, 2 nd Edition, 2013.					
6.	L. I. Schiff, Quantum Mechanics, McGraw Hill Education, USA, 4th Edition, 2017.					
7.	D. J. Griffiths , Introduction to Quantum Mechanics, Cambridge University Press, UK, 3 rd Edition, 2018.					
8.	C. Cohen-Tannoudji, B. Diu, and F. Laloe , Quantum Mechanics, Volume 1: Basic Concepts, Tools, and Applications, Wiley, USA, 2 nd Edition, 2019.					

Introduction to Astronomy and Astrophysics

Scheme Version:	Name of the subject: Introduction to Astronomy	L	Т	Р	С	Semester: II (1 st Year)	Contact Hours per Week: 4
	and Astrophysics	3	1	0	4		Total Hours: 60=45+15
Subject Code:	Applicable to Programs: M.Sc. Physics	Evaluation	Inter nals	30 Marks	Ex: Du	Examination Duration: 3hours	
		(10ta) Marks: 100)	End Term Exams	70 Marks	Pro Ge Ma	erequisite: neral thematics	
Course Description	To make the students aware about different theoretical and observational technique adopted in understanding astrophysics and astronomy						
Course Objectives	 The objective of this course is to make the students Understand coordinate systems in Astronomy Understand the Sun Understand Binary stars. Understand stellar distances 						
Course Outcomes	Course On completion of the course, student would be able to : • differentiate between various coordinate systems • know about the characteristics of Sun • Know about Binary stars and their motions • Know about stellar distances and other properties COURSE SYLLABUS						
Unit No.		Content of	Each Unit			Hou	rs of Each Unit

	Observational Data:	
	Astronomical Coordinates- Celestial Sphere, Horizon,	
	Equatorial, Ecliptic and galactic system of coordinates,	
	Conversion from one coordinate system to another. Aspects of	
1	sky from different places on the earth. Twilight, Seasons,	15
1	Sidereal. Apparent and Mean solar time and their relations.	15
	Calendar. Julian date and heliocentric correction.	
	Determination of Mass, luminosity, radius, temperature and	
	distance of a star, H-R Diagram, Empirical mass-luminosity	
	relation.	

	Stellar Distances and Magnitudes :					
	Distances of stars from the trigonometric, secular and					
	moving cluster parallaxes. Stellar					
	motions. Magnitude scale and magnitude systems.					
2	Atmospheric extinction. Absolute	15				
	magnitudes and distance modulus. Colour index. Black-body					
	approximation to the continuous					
	radiation and temperatures of stars. Variable stars as distance					
	indicators.					
	Binaries and Variable Stars :					
	Visual, spectroscopic and eclipsing binaries. Importance of					
	binary stars as source of basic					
3	astrophysical data. Classification and properties of various 15					
	types of intrinsic and eruptive					
	variable stars. Astrophysical importance of the study of					
	variable stars. Novae and Supernovae.					
	Sun :					
	Physical Characteristic of Sun – Basic data, solar rotation,					
4	solar magnetic fields, Photosphere- granulation, sun-spots,	15				
	Babcock model of sunspot formation, solar atmosphere-	15				
	chromospheres and corona, Solar activity - flares,					
	prominences, Solar wind, activity cycle, Helioseismology					
	ΤΕΥΤ ΒΟΟΙΖΟ					

TEXT BOOKS

1. **W.M.Smart**: Text book of Spherical Astronomy, Cambridge University Press; 6th edition, 1977

2. **M. Zeilik,** Astronomy, The evolving Universe, Cambridge University Press, 1st Edition, 2002.

3. P.V. Foukal, Solar Astrophysics, Wiley-VCH, United States, 1st Edition, 2004.

4. **I. Morrison,** Introduction to Astronomy and Cosmology, Wiley, United States, 1st Edition, 2008

FUNDAMENTALS OF SOLAR ENERGY

Scheme Version:	Name of the Subject:	L	Т	Р	С	Semester:	Contact hours per week: 3+1	
2024-26	Fundamentals of Solar Energy	3	1	0	4	II (1 st Year)	Total Hours: 60=45+15	
Subject Code:	Applicable to	Evaluation	Internals	30 Marks	Ex	Examination Duration: 3 hours		
Subject Code:	M.Sc. Physics	(Total Marks: 100)	End Term Exams	70 Marks	Pre-requisite of course: Ther is no prerequisite orco-requisit for this course. But students are expected to know basic semiconductor physics.			
Course Description	The course is intended for students who have interest in alternate energy sources as a contributor to sustainability. It provides a comprehensive treatise on the science and technology of solar energy, its collection and the design principles that need to be understood for its effective use in a variety of installations and uses.							
Course Objectives	 The Course will be introducing the students to all the aspects of PV technology. To develop basic understanding related to fabrication ad characterization of different types of solar cells. To know state of art in the field of solar cells materials and solar cells. 							
Course Outcomes:	 On completion of this course, student will learn: The available solar energy and the current solar energy conversion and utilization processes, solar spectrum. The factors that influence the use of solar radiation as an energy source. The various active and passive technologies that are available for collecting solar energy; have the ability to apply design principles to selection of an appropriate solar energy installation to meet requirements. How solar cells convert light into electricity, how solar cells are manufactured, how solar cells are evaluated. 							

	and potential of existing and emerging solar cell technologies.					
	• To examine the potential & drawbacks of currently manufactured technologies, as well as pre-commercial technologies. How to enhance solar cell performance and reduce cost, and the major hurdles-technological and economic, towards widespread adoption.					
	COURSE SYLLABUS					
Unit No.	Content of Each Unit	Hours of Each Unit				
1.	Solar Radiation: origin, solar constant, spectral distribution of solar radiation, absorption of solar radiation in the atmosphere, global and diffused radiation, seasonal and daily variation of solar radiation, measurement of solar radiation, sun tracking systems, photo thermal conversion, solar energy collectors, collector efficiency and its dependence on various parameters.	15				
2.	Solar energy: storage of solar energy, solar pond, solar water heater, solar distillation, solar cooker, solar green houses, solar dryers, absorption air conditioning. solar fuels: electrolysis of water, photoelectrochemical splitting of water.	15				
3.	Fundamentals of solar cells: Photo voltaic effect, semiconductor properties, energy levels, basic equations, p-n junction its characteristics, fabrication steps, thermal equilibrium condition, depletion capacitance, junction breakdown, heterojunction. Silicon based solar cells: single crystal, polycrystalline and amorphous silicon solar cells.	15				
4.	Device physics: Solar cell device structures, construction, output power, efficiency, fill factor and optimization for maximum power, surface structures for maximum light absorption, current voltage characteristics in dark and light, operatingtemperature vs conversion efficiency, charge carrier generation, recombination and other losses. Cadmium telluride solar cells, copper indium gallium selenide solar	15				

		cells, organic solar cells, perovskite solar cells, Advanced				
		concepts in photovoltaic research.				
		TEXT BOOKS				
1.	S P Sukh	atme, Solar Energy: Principles of Thermal Collection and Sto	orage, Tata McGraw Hill,			
	1996.					
2.	Solid Stat	e Electronic Devices, Ben. G. Streetman, S. K. Banerjee, PHI Le	aning Pvt. Ltd, 2000.			
3.	3. D. Yogi Goswami, Frank Kreith, Jan F. Kreider, Principles of Solar Engineering, Taylor and					
	Francis, 2	2000.				
4.	4. Jasprit Singh, Semiconductor Devices, Basic Principles, Wiley, 2001					
5.	Stephen J	Fonash, Solar Cell Device Physics, 2nd edition, Academic Press	, 2003.			
6.	H P Garg	, J Prakash, Solar energy fundamentals and applications, Tata M	cGraw Hill publishing Co.			
	Ltd, 2006					

Accelerator Physics

Scheme Version:	Name of the subject:	L	Т	Р	С	Semester:	Contact hours per week: 3+1	
2024-26	Accelerator Physics	3	1	0	4	II (1 st Year)	Total Hours: 60=45+15	
Subject Code:	Applicable to	Evaluation	CIE	30 Marks	Exan	equisite of Course: Nuclear hysics, Electrodynamics, Quantum mechanics		
Subject Coue.	Programs: M.Sc. Physics	(Total Marks: 100)	TEE	70 Marks	Prere Ph			
Course Description	This course is intended to expose the students to theoretical design and usage of various particle accelerators.							
Course Objectives	 To understand the beam optics. Get knowledge about different types of accelerators To understand the main features of superconducting cyclotron, linear accelerators and high energy accelerators. 							
Course Outcomes	 After completion of this course, students would be able to: Understand the beam optics & beam transport system. About various theoretical techniques to accelerate particles and technical details of electrostatic accelerators. Get knowledge about latest accelerator technology based on Rf cavities. About Synchrotron Radiations & production of radioactive ion beams. 							

COURSE SYLLABUS						
Unit No.	Content of Each Unit	Hours of Each Unit				
1	Charged Particle Dynamics: Particle motion in electric and magnetic fields, Beam transport system, Beam pulsing and bunching techniques, microbeams, Particle and ion sources, secondary beams, Measurement of beam parameters.	15				
2	Electrostatic and Heavy Ion Accelerators: Van de Graaff voltage generator, Cockcroft-Walton voltage generator, insulating column, voltage measurement, Acceleration of heavy ions, Tandem electrostatic accelerator, Production of heavy negative ions, Pelletron and Tandetron, Cluster beams.	15				
3	Radiofrequency Accelerators: Linear accelerators - Resonance acceleration and phase stability, electron and proton Linacs, Superconducting Heavy Ion Linear Accelerators. Circular accelerators- Cyclotron, Frequency Modulated Synchrocyclotron, AVF Cyclotron, Alternating- gradient accelerators.	15				
4	Synchrotron Radiation Sources: Electromagnetic radiation from relativistic electron beams, Electron synchrotron, Characteristics of synchrotron radiation. Production of Radioactive ion beams, Polarized beams, Proton synchrotron, Colliding accelerators.	15				
TEXT BOOKS						
1. M.S. Livingston and J.P. Blewel, Particle Accelerators, McGraw-Hill Book Press, 1962.						
2. Ed. J. Cerny	, Nuclear Spectroscopy and Reactions Part-A, Academic Press, 1974.					
3. H.J. Wiedma 4. S. Y. Lee , Ac	n, Particle Accelerator Physics, Vol I and II, Springer Verlag, 1998. celerator Physics, World Scientific, Singapore, 2004					

Radiation Physics

Scheme Version:	Name of the subject:	L	Т	Р	С	Semester:	Contact hours per week: 3+1	
2024-26	Radiation Physics	3	1	0	4	II (1 st Year)	Total Hours: 60=45+15	
Subject Code:	Applicable to	Evaluation	Interna Is	30 Marks	Exar	nination Dura	tion:3 hours	
Subject Code.	Programs: M.Sc. Physics	(Total Marks: 100)	End Term Exams	70 Marks	Prere Ph	Prerequisite of Course: Nuclear Physics, Electrodynamics, Quantum mechanics		
Course Description	To impart knowledge in depth about nuclear radiation, its detection, nuclear spectrometry and related aspects							
Course Objectives	 To aware the students about the various type of nuclear radiations and their interaction with matter To learn various techniques for detection of radiations To study the nuclear spectrometry 							
Course Outcomes	After completion of this course, students would be able to: Understand nuclear radiation and its detection procedure, nuclear spectrometry. Know applications of nuclear spectrometry Know how to solve problems related to safety aspect of nuclear radiation Understand the nuclear spectroscopy and basics of nuclear medicine. 							
		COURSE	SYLL	ABUS				

Unit No.	Content of Each Unit	Hours of Each
		Unit
1	Interaction of Nuclear Radiations: Origin and energy spectra, Brief discussion of interactions of gamma rays, Electron and heavy charged particles with matter, Different types of neutron sources, Interaction of neutron with matter, Neutron detectors.	15
2	Nuclear Radiation Detector: Gas filled detectors; Ionization chamber, Proportional counter and GM counter, Scintillation detector, semiconductor detector for X-rays, gamma rays and charged particle detection, Radiation exposure, Biological effects of radiation, radiation monitoring	15
3	Nuclear Spectrometry and Applications: Analysis of nuclear spectrometric data, measurement of nuclear energy levels, spins, parities, moments, internal conversion coefficients, Angular correlation, Perturbed angular correlation, measurement of g-factor and hyperfine fields.	15
4	Mossbauer Effect: Positron annihilation, particle and photon induced x-ray emission, Elemental concentration analysis by charged particles and neutron activation analysis, Diagnostic nuclear medicine, Therapeutic nuclear medicine.	15
	TEXT BOOKS	
1. 2. 3.	Knoll G. F., Radiation Detection and Measurement, John Wiley & Son Singuru R. M., Introduction to experimental nuclear physics, Wiley E 1987.Muraleedhara V. Nuclear radiation Detection, measurement and Arr Publishing House, 2009.	ns, 1989. astern Publications, nalysis, Narosa

Environmental Physics

Scheme Version:		Name of the subject:	L	Т	Р	С	Semester:	Contact hours per week: 3+1	
2024-20	6	Environmental Physics	3	1	0	4	II (1 st Year)	Total Hours: 60=45+15	
Subject Co	ode:	Applicable to	Evaluation (Total	Internals	30 Marks	Exam	ination Dura	ation: 3 hours	
		M.Sc. Physics	Marks: 100)	End Term	70 Marks	Prere	Prerequisite of Course: 10+2 with Science		
Course Descriptio	This course aims to introduce students to the application of core physical concepts of the Earth system, with special focus on: atmospheric radiation, greenhouse gases, pollution, and climate change. This course will demonstrate how physics is fundamental to understand natural and human influences on climate and atmospheric composition.								
Course Objectiv	e	 To understand the broad scope of problems to which the principles of environmental physics can be applied and to appreciate the commonalities that exist among widely varying systems; To develop problem solving abilities and a critical, practical awareness of global environmental change. 							
Course Outcome	es	 On completion of the course, student would be able: To understand the concepts like energy transformations and various forms of energy, climate change and its effect on living beings To understand the concepts like thermodynamics and its applications to various energy transformation processes: To develop an awareness of climate change and its effects 							
TT 4/ ST			COURSI	ESYLLA	ABUS				
Unit No.		Content of Each Unit					Hours	of Each Unit	

of energy . Law of				
5				
-				
,				
,				
Inited				
Cintou				
ers New				
States.				
2002.				
eds.				
- 7				
Stanford				

- **9. P. Hughes**, **N. J. Mason**, Introduction to Environmental Physics: Planet Earth, Life and Climate, Taylor & Francis, France, 1st Edition, 2005.
- **10.** J. Monteith and M. Unsworth, Principles of Environmental Physics: Plants, Animals and the Atmosphere, Elsevier, 4th Edition, Europe, 2013.
- 11. K.L. Kumar, Engineering Fluid Mechanics, S. Chand, New Delhi, 4th Edition, 2016.

Physics of Digital Photography

Scheme	Name of the	L	Т	P	С	Semester:	Contact		
Version:	subject:						hours per		
	Physics of						week: 3+1		
2024-26	Digital Photography	3	1	0	4	I (1 st Year)	Total Hours: 60=45+15		
Subject Code:	Applicable to	Evaluation	s		Exa	mination Du	ration: 3 hours		
	Programs: M.Sc. Physics	(Total Marks: 100)	Internals	30 Marks					
			End Term Exams	70 Marks	Pre with	requisite of C n Physics	'ourse: B.Sc.		
Course Description	The aim of this course is to provide a theoretical overview of the photographic imaging chain. The course is intended to serve as a link between imaging science and photographic practice.								
Course Objective	 To become proficient at the technical aspect of photographing with a digital camera. To develop and practice skills using digital photography tools and the Internet including emailing and posting to a web site To develop the habit of looking closely at the visible world around you in order to represent it in terms of aesthetics, beauty and truth. – To look at what you are seeing and to see what you are looking at 								
Course Outcomes	 On completion of the course, student would be able: To understand the photographic optics & methods To understand the basic principle of photography To understand the theory of exposure 								
	• To understand about the image quality								

COURSE SYLLABUS			
Unit No.	Content of Each Unit	Hours of Each Unit	
1	 Fundamental optical formulae: Image formation: Refraction, Gaussian optics, Lens refractive power, Magnification, Focal length, Lens focusing movement Field of view: Entrance and exit pupils, Chief and marginal rays, Angular field of view, Field of view area, Focal-length multiplier, Depth of field: Circle of confusion, Depth of field equations, Hyperfocal distance, Focus and recompose limits, distortion, Exposure: Photometry, Flux emitted into a cone, Relative aperture, f- number, Working f-number, f-stop, Natural vignetting, Photometric exposure, Exposure value, f-number for aplanatic lenses 	15	
2	History of photography: Pinhole Camera, Camera Obscura, Normal Human Eye and Process of Seeing-Human eye and camera, Camera principles: Compact cameras and SLR's - Working of SLR camera- Different image sensors-CCD and CMOS. Angle of view- Different types of lenses- normal lens, wide angle lens, fish eye lens, prime lens, telephoto lens. Depth of Field-Shallow depth of field, large depth of field, Depth of focus - circles of confusion	15	
3	Exposure strategy : Digital output, Sensor response, Colour, Digital output levels, Dynamic range, Tonal range, Tone reproduction, Gamma, Tone curves, Histograms, verage photometry, Reflected-light metering, Average scene luminance, Exposure index, ISO speed, Standard output sensitivity, Exposure modes: Metering modes, Exposure compensation, Aperture priority (A or Av), Shutter priority (S or Tv), Program mode (P), Manual mode (M)	15	
4	Image quality : Colour temperature, White balance, Color space, Lens MTF, sharpness, Signal-to-noise ratio, Different Image capturing formats: RAW, TIFF, JPEG, Storage Devices- SD card CF card, Principles of Composition: Perspective - Space (Negative and Positive), Directional lines-Golden Section and Rule of the Third, Colour	15	

	Theory		
TEXT BOOKS			
1. Steven Heller, A History of Photography: From 1839 to the Present			
2.	2. Tom Ang, Photography: The Definitive Visual History		
3.	3. Todd Gustavson and George Eastman House, Camera: A History of Photography from		
	Daguerreotype to Digital by Understanding Exposure, Fourth Edition by B	RYAN PETERSON.	
4.	4. DK, Digital Photography Complete Course Hardcover		
5.	5. Fil Hunter, Steven Biver and Paul Fuqua, Light Science & Magic: An Introduction to		
	Photographic Lighting by Understanding Color in Photography by Bryan	Peterson.	
6.	Andy Rowland, Physics of Digital Photography by (IOP Publishing).		