SANSKARAM UNIVERSITY JHAJJAR

CBCS and LOCF and NEP-2020 Based Curriculum and Syllabi Of <u>M.Sc. Chemistry</u>

(w.e.f. 2024)

DEPARTMENT OF CHEMISTRY SCHOOL OF ALLIED AND BASIC SCIENCES

Approved by:Approval Status :Approval Date:

BOS

Academic Council

Table of Contents

Sr.	Contents
No.	
	VISION AND MISSION
	i) Vision and Mission of the Department
1	BACKGROUND
	i. NEP-2020 and LOCF an integrated Approach
	ii. About Chemistry
	iii. About the Program (Nature, extent and aims)
	iv. Qualification Descriptors (possible career
	pathways)
2	PROGRAMME OUTCOMES (POs)
3	PROGRAMME SPECIFIC OUTCOMES (PSOs)
4	POSIGRADUATE ATTRIBUTES
5	STRUCTURE OF MASTER'S COURSE
6	LEARNING OUTCOME INDEX
7	SEMESTER-WISE COURSES AND CREDIT DISTRIBUTION
8	COURSE-LEVEL LEARNING OUTCOMES
9	TEACHING-LEARNING PROCESS
10	IMPLEMENTATION OF BLENDED LEARNING
11	ASSESSMENT AND EVALUATION
12	KEYWORDS
13	REFERENCES
14	APPENDICES

VISION AND MISSION

i) Vision and Mission of the Department

Vision

To establish a world-class teaching and research reputation of the department that contributes society through its innovative, creative and scholarly approach.

Mission

To educate the students by adopting highest academic and professional standards to meet the global competency in the field of chemical sciences. To establish and maintain a high quality of support, research facilities, multidisciplinary and skill-based learning opportunities to our staff, students and researchers to orient them to world class creative and innovative minds.

1. BACKGROUND

i) NEP-2020 and LOCF an integrated Approach

Considering the curricular reforms as instrumental for desired learning outcomes, all the academic departments of Sanskaram University of Haryana made a rigorous attempt to revise the curriculum of undergraduate and postgraduate programmes in alignment with NationalEducation Policy-2020 and UGC Quality Mandate for Higher Education Institutions-2021. The process of revising the curriculum could be prompted with the adoption of "Comprehensive Roadmap for Implementation of NEP-2020" in 1st meeting of the NEP committee of the University held on 18th April,2024. The Roadmap identified the key features of the Policy and elucidated the Action Plan with well-defined responsibilities and indicative timeline for major academic reforms.

The process of revamping the curriculum started with the series of webinars and discussions conducted by the University to orient the teachers about the key features of the Policy, enabling them to revise the curriculum in sync with the Policy. Proper orientation of the faculty about the vision and provisions of NEP-2020 made it easier for them to appreciate and incorporate the vital aspects of the Policy in the revised curriculum focused on 'creatingholistic, thoughtful, creative and well-rounded individuals equipped with the key 21st century skills' for the 'development of an enlightened, socially conscious, knowledgeable, and skilled nation'.

With NEP-2020 in background, the revised curricula articulate the spirit of the policy by emphasizing upon—integrated approach to learning; innovative pedagogies and assessment strategies; multidisciplinary and cross-disciplinary education; creative and critical thinking; ethical and Constitutional values through value-based courses; 21st century capabilities across the range of disciplines through life skills, entrepreneurial and professional skills; community and constructive public engagement; social, moral and environmental awareness; Organic Living and Global Citizenship Education (GCED); holistic, inquiry-based, discovery-based, discussion-based, and analysis-based learning; exposure to Indian

knowledge system, cultural traditions and classical literature through relevant courses offering 'Knowledge of India'; fine blend of modern pedagogies with indigenous and traditional ways of learning; flexibility in course choices; student-centric participatory learning; imaginative and flexible curricular structures to enable creative combination of disciplines for study; offering multiple entry and exit points initially in undergraduate programmes; alignment of Vocational courses with the International Standard Classification of Occupations maintained by the International Labour Organization; breaking the silos of disciplines; integration of extra-curricular and curricular aspects; exploring internships with local industry, businesses, artists and crafts persons; closer collaborations between industry and higher education institutions for technical, vocational and science programmes; and formative assessment tools to be aligned with the learning outcomes, capabilities, and dispositions as specified for each course. In case of UG programmes in Engineering and Vocational Studies, it was decided that the departments shall incorporate pertinent NEP recommendations while complying with AICTE, NBA, NSQF, International Standard Classification of Occupations, Sector Skill Council and other relevant agencies/sources. The University has also developed consensus on adoption of Blended Learning with 40% component of online teaching and 60% face to face classes for each programme.

The revised curricula of various programmes could be devised with concerted efforts of the faculty, Heads of the Departments and Deans of Schools of Study. The draft prepared by eachdepartment was discussed in series of discussion sessions conducted at Department, Schooland the University level. The leadership of the University has been a driving force behind the entire exercise of developing the uniform template and structure for the revised curriculum. The Vice Chancellor of the University conducted series of meetings with Heads and Deans to deliberate upon the vital parameters of the revised curriculum to formulate a uniform template featuring Background, Programme Outcomes, Programme Specific Outcomes, Postgraduate Attributes, Structure of Masters Course, Learning Outcome Index, Semester- wise Courses and Credit Distribution, Course-level Learning Outcomes, Teaching-Learning Process, Blended Learning, Assessment and Evaluation, Keywords, References and Appendices. The experts of various Boards of Studies and School Boards contributed to a large extent in giving the final shape to the revised curriculum of each programme.

To ensure the implementation of curricular reforms envisioned in NEP-2020, the Universityhas decided to implement various provisions in a phased manner. Accordingly, the curriculum may be reviewed annually.

ii) About Chemistry

Chemistry is the science of matter and its transformations. It addresses fundamental questions about the observable matter, ranging from its components, structure, properties and interconversions. As a system of knowledge, Chemistry not only explains the existence and behavior of matter around and within us, but also empowers us to manipulate the matterinto new and improved forms for our use. From the ancient practices of rasayan vidya and alchemy, modern chemistry has grown over centuries into a formidable science that touches all aspects of human life. Humanity's progress in the last three centuries is pivoted on the contributions of chemistry, chemical industry and associated endeavors. The range of influence of chemistry in our life spans from essentials such as food (agrochemicals, preservatives), shelter (cement, metals, alloys, polymers) and health (drugs, cosmetics, soap, toothpaste), to advancements such as textiles (polymers, leather), beverages (flavoring and fermentation), crime fighting (forensics), weaponry (explosives), space travel (fuel) and cosmology (element detection). The list can go on endlessly. The most visible contribution of chemistry to civilization is achieved by the advancements in modern medicine that was fuelled by organic chemistry. This led to significant improvements in the living standards, extension of human average life span and fighting of dangerous diseases such as cancer and microbial infections.

Chemistry is placed centrally between the other two major branches of science, namely physics and biology. Therefore, it is often called the *central science*. It influences the developments in these two broad realms of science as much as it is influenced by the discoveries in them. The fundamental importance of chemistry and chemical industry in sustaining human civilization demands for a steady supply of trained and skilled manpower. Thus, it is unsurprising that it is an essential and integral department in higher education institutions. Education in chemistry not only imparts the technical know-how about structure, reactions and properties of matter, but also empowers the learner to raise fundamental questions about various natural phenomena, address local issues and come up with sustainable solutions, identify areas of life where intervention of chemistry can bring about progress and imbibe and spread the spirit of free enquiry and scientific temper.

iii) About the Programme (Nature, Extent and Aims)

The Post-Graduate Programme in Chemistry will impart advanced knowledge of basic and applied chemical sciences to the graduates. It will prepare the students for taking up challenging assignments in academia and industry and also empower them with skill and knowledge for generating employment for their own and others. The Programme introduces the students to advanced developments in chemical sciences as well as in the field of other allied sciences, by providing them multidisciplinary and interdisciplinary courses. The design of choice-based curriculum can enrich students with analytical and problem-solving capabilities. It is designed to bring out the best of the abilities of each student, allow them tosharpen the scientific temper and be abreast with the contemporary developments in the area.

The programme includes a balanced combination of Core, Electives and Skill based Courses. The courses are designed in such a way to cover the entire spectrum of chemical sciences from fundamentals (that will bring admitted students from various backgrounds to a common level) to most recent advancements in the field (that will make them ready to take up challenging assignments in the real world).

The M.Sc. (Chemistry) Programme is of two years duration which is divided into four semesters. The teaching and learning in the Programme will involve theory (lectures), practicals, tutorial and seminar-based classes. During the whole programme about 40 % syllabus of each course may be delivered via online mode and with a blended teaching- learning approach.

The curriculum will be taught through formal lectures with the aid of pre-made presentations, audio and video tools whenever necessary. Other teaching aids can also be used as and when

required. The additional requirements like industrial visits, summer training and project work are also incorporated into the curriculum.

The Aims of the programme include

- To inculcate basic and advanced knowledge of chemical sciences among students.
- To provide higher education, disciplinary and inter/multi-disciplinary research- oriented knowledge to the students to make them lifelong learners.
- To provide a learned, skilled and creative pool of graduates who are ready to take up challenging assignments in different kinds of chemical industries, research institutions and academia.
- To mould responsible, proactive citizens who are equipped with scientific thinking and skills to address problems of their locality
- Adequate blend of theory, computation and hands-on experiments.
- Modernized lab courses close to recent/current research.

iv) Qualification Descriptors (possible career pathways)

On successful completion of the M.Sc. Chemistry Programme, students of the department are expected to be ready to take up opportunities all around the world in areas that demand skills in chemical and allied sciences. As the chemical industry is enormously vast and diverse, numerous opportunities and challenges await the graduates. The graduates are expected to satisfactorily address the professional expectations, maintain a work-life balance and lead productive and meaningful lives. Some of the possible career paths for the postgraduate students may be:

- 1. Teaching and Research in academia
- 2. Research scientists in pharmaceutical and other chemical and material industries
- 3. Research scientists in other allied sciences
- 4. Entrepreneurship in chemical science-based ventures
- 5. Administrative Assignments in various government and private agencies

6.Chemist/Scientist/Technician assignments in any of the following industries: pharmaceutical, polymers, petrochemicals, materials sciences, nanotechnology, fuels, non- conventional energy, renewable resources, agrochemicals, fermentation and processing, paints and pigments,

metallurgy, packaging, cosmetics, cements, natural products, forensics, explosives, and any other various allied branches of chemistry.

2. PROGRAMME OUTCOMES (POs)

The overall aims of the programme may be achieved by addressing its various components that are incorporated into the curriculum as described below. Each of these components is designed to lead to specific outcomes that are desired after the successful completion of the programme.

PO-No.	Component	Outcomes				
PO-1	Basic Knowledge	Capable of delivering basic disciplinary knowledge gained during the programme.				
PO-2	In-depth Knowledge	Capable of describing advanced knowledge gained during the programme.				
PO-3	Critical thinking and Problem-Solving abilities	Capable of analyzing the results critically and applying acquired knowledge to solve the problems.				
PO-4	Creativity and innovation	Capable to identify, formulate, investigate and analyze the scientific problems and innovatively to design and create products and solutions to real life problems.				
PO-5	Research aptitude and global competency	Ability to develop a research aptitude and applyknowledge to find the solution of burning research problems in the concerned and associated fields at global level.				
PO-6	Holistic and multidisciplinary education	Ability to gain knowledge with the holistic and multidisciplinary approach across the fields.				
PO-7	Skills enhancement	Learn specific sets of disciplinary or multidisciplinary skills and advanced techniques and apply them for betterment of mankind.				
PO-8	Leadership and Teamwork abilities	Ability to learn and work in a group and capable of leading a team even.				

3. PROGRAMME SPECIFIC OUTCOMES (PSOs)

PO-9	Environmental and	Learn important aspects associated with environmentaland	The			
	human health	human health. Ability to develop eco-friendly	post			
	awareness	technologies.				
PO-10	Ethical thinking and	Inculcate the professional and ethical attitude and ability				
	Social awareness	to relate with social problems.				
PO-11	Lifelong learning	Ability to learn lifelong learning skills which are important				
	skills and	to provide better opportunities and improve quality of life.				
	Entrepreneurship	Capable to establish independent				
		startup/innovation center etc.				

graduates shall be able to realise the following specific outcomes by the end of program studies:

Number	Programme Specific Outcomes
PSO-1	To acquire a thorough knowledge about basic theoretical concepts and experimental aspects of chemistry.
PSO-2	To fully develop the skills for using the earned knowledge within different branches of chemistry.
PSO-3	To develop the attitude for identifying and solving problems using chemistry
PSO-4	To develop the capability to search, acquire and apply recent developments in research field of chemical sciences to problems
PSO-5	To develop an overview of the role of chemical sciences and chemical industry in sustaining civilization
PSO-6	To develop the skill to adopt the learned principles in various settings and innovate with the importance of sustainability in mind, if necessary

4. Postgraduate Attributes

On completion of the post graduate programme in chemistry, students are expected to be equipped

with the skills of creative, critical and rational thinking associated with chemistry and its use for human society. The following attributes are expected from the students of M.Sc. Chemistry:

No.	P.G. Attributes
PGA-1	Disciplinary knowledge and solid foundation
PGA-2	Creative, critical and reflective Thinking PGA-
PGA-3	Attitudes and values
PGA-4	Principle and practical aspects of different instruments
PGA-5	Research skills
PGA-6	Think beyond which were never thought before
PGA-7	Information/digital literacy
PGA-8	Team work

5. STRUCTURE OF MASTER'S COURSE

The M.Sc. (Chemistry) Programme is of *two years* duration which is divided into four semesters. The programme under Choice-Based Credit System (CBCS) includes a balanced combination of *Core*, *Electives* and *Skill Courses* (**Table 1**).

As per P.G. Ordinance of Sanskaram University, total credit requirement for completion of the programme shall be 96 (\pm 4).

Total credit requirement of the present P.G. programme is **96**, however, 4 additional credit may be earned by the interested students from Swachh Bharat Internship (2 Credit) and six weeks industrial summer training course (2 Credit) (**Programme Structure**).

Table	1
-------	---

Sr. No.	Types of Courses	Nature	Total Credit 98 (2 optional)	
1	Core Courses (CC)	Compulsory Courses	48	49
2	Elective Courses (EC)	Discipline Specific Elective Courses	32	33
		Discipline Centric Elective Courses	4	4
		Generic Elective Courses	8	8
3	Skilled-based courses/ Self-study based courses	Discipline Centric Skill Courses	4	4
			96	96
4	Swachh Bharat Internship at Institute Level	Elective Optional for interested students	96 + 2 = 98	
5	Industrial Summer Training	Optional for interested students	98 + 2 = 100 Maximum credit =	100

NOTE: MOOC courses (SWAYAM) having similarity more than 75% with the core course may be offered to the students. For elective courses (whatever nomenclature may be used), the students may opt from the MOOC courses provided these courses are not in the list of core course (SWAYAM) keeps changing, the department is authorized to finalize the list of MOOC courses for each semester based on the above criteria.

PROGRAMME STRUCTURE

Choice Based Credit System (CBCS) Based Course Structure of M.Sc. Chemistry Programme (2 Years) in Consonance with NEP-2020 and LOCF

	YEAI	२ १			
Semester-I			Semester-II		
Course	Credit	Hrs.	Course	Credit	Hrs.
IC-I (CC)	4	4	IC-II (CC)	4	4
ICP-I (CC)	2	4	ICP-II (CC)	2	4
OC-I (CC)	4	4	OC-II (CC)	4	4
OCP-I (CC)	2	4	OCP-II (CC)	2	4
PC-I (CC)	4	4	PC-II (CC)	4	4
PCP-I (CC)	2	4	PCP-II (CC)	2	4
DCEC*	2	2	DCSC*	2	2
GEC [§]	4	4	GEC [§]	4	4
IC-I: Inorganic Chemistry-I ICP-I: Inorganic ChemistryPract OC-I: Organic ChemistryPract PC-I: Organic ChemistryPract PC-I: Physical ChemistryPract *Can be chosen from the list o [§] GEC (Generic elective course) students from other Departme	tical-I ical-I ical-I <mark>fcourses availa</mark> will be availabl ents	<mark>ble</mark> e for	Seminar (Research paper based) (CC) IC-II: Inorganic Chemistry-II ICP-II: Inorganic Chemistry Practical-II OC-II: Organic Chemistry-II OCP-II: Organic Chemistry Practical-II PC-II: Physical Chemistry-II PCP-II: Physical Chemistry Practical-II Seminar (Research paper based) (O *Can be chosen from the list ofcourses av §GEC (Generic elective course) will be ava Departments	2 CC) ailable ilable for stud	2 ents fromother
Total Credit and Hrs.	24	30	Total Credit and Hrs.	26	32

Note:

- A 02 Credit Summer Training (Optional) Self-study/Skill-based Course of six weeks will be available to interested students at the end of Semester-II.
- 2) A 02 Credit Elective Course on the basis of Swachh Bharat Internship Programme will be available to all students. The course can be allotted to the interested students in a batch- wise manner to earn max 02 credits in the duration of two years.
- 3) Students may choose option 2 in Sem-III on the basis of their interest in consultation with concerned faculty member(s). The students shall continue the dissertation work under the supervision of the same faculty member(s) to carry out second part of the dissertation in semester-IV.
- 4) Choice Based Credit System (CBCS) based M.Sc. Chemistry programme will be awarded with a minimum of 96 credit (compulsory), although it can be a maximum of 100 credit.

6. SEMESTER-WISE COURSES AND CREDIT DISTRIBUTION

A. LIST OF COURSES OFFERED BY DEPARTMENT OF CHEMISTRY

Sr.	Cours	Course Name	Course Code	Cours	Credit	Semester
NO	eno	CODE COUDS		erype		
1	CIL 01	Inorgania Chemistry I		CC	04	T
1	CH-01	Organic Chemistry I			04	I T
2	CH-02	Dhypical Chemistry I			04	I T
3 1	СН-03	Inorgania Chemistry Practical I			04	I T
4	СП-04	Organic Chemistry Practical-I			02	I T
6	CH-05	Physical Chemistry Practical-I			02	I I
7	CH-00	Inorganic Chemistry-II		$\frac{cc}{cc}$	02	I II
8	CH-07	Organic Chemistry-II		$\frac{cc}{cc}$	04	II II
9	CH-00	Physical Chemistry-II			04	II II
10	CH-10	Inorganic Chemistry Practical-II			04	II
11	CH-11	Organic Chemistry Practical-II			02	II
12	CH-12	Physical Chemistry Practical-II		CC	02	I
					•=	
		DISCIPLINE CENTRIC ELECTI	VE COURSES (DCEC)			
1	DCEC 1	Reaction Mechanism: Structure and		DCEC	02	1
		Reactivity				
2	DCEC 2	Nuclear Chemistry		DCEC	02	I
		DISCIPLINE CENTRIC SKILL-BA	SED COURSES (DCSC)			
1	DCSC 1	Computational Chemistry		DCSC	02	=
2	DCSC 2	Analytical Techniques in Chemistry		DCSC	02	II
		SWACHH BHARAT INTERNSHIP	PROGRAMME (ELECTIVE)			
1	DCSC 3	Activities at Department and University Level		DCSC	02	I-IV
		SUMMER TRAINING	G (OPTIONAL)			
2	DCSC 4	Summer Training (6 weeks)		DCSC	02	At end ofSem- II
	G	ENERIC ELECTIVE COURSE (GEC) [FO	R STUDENTS OF OTHE	R DEPA	RTMEN'	TS]
1	GE 1	Chemistry for Biologists		GEC	04	I
2	GE 2	Chemistry of Materials		GEC	04	I

3	GE 3	Medicinal Chemistry	GEC	04	I

B. GEC COURSE

• Various available GEC courses can be selected from other Departments.

7. COURSE-LEVEL LEARNING OUTCOMES

INORGANIC CHEMISTRY-I

Course No:	Course Name:		Course Code: 081401001				
CH-01	Inorganic Chemistry-I						
Batch:	Programme:	Semester:	L	т	Р	Credit	Contact Hrs.
2024							per Week: 04
onwards	M.Sc. Chemistry	I	4	0	0	4	Total Hrs.: 60
Total Evaluation Marks: 100		Examinatio	n Duration:		3 Hrs.		
		Pre-requisit geometries	e of course: and bonding	Basic ur models c	nderstandin of coordinat	g of coord ion compo	ination chemistry, unds.
Course	To provide students	s with basic u	nderstanding	of symm	etry, coord	ination che	mistry, magnetic
Objectives	properties of coord	ination compl	exes, metal o	arbonyl/	nitrosyl and	l metal clus	iters.
Course	After completing th	nis course, stu	dent is expe	ted to lea	arn the follo	owing:	
Outcomes:	CO1: Knowledge of	molecular sy	mmetry and	point gro	ups		
	CO2: Understandin	g bonding mo	dels in coord	lination c	ompounds		
	CO3: Application th	e theories an	d models of o	chemical	bonding in	coordinatio	on compounds
	CO4: Understandin	g of skeleton	electron pair	s in non-t	ransition co	ompounds	
	CO5: Introduction to metal carbonyls, nitrosyls and related compounds						
CO6: Scope of inorganic compounds							
	COURSE SYLLABUS						

Note for Examiners and Students:

1. The question paper will consist of four sections A, B, C & D. Examiner will set nine questions in all, selecting two questions from section A, B, C, and D of 15 marks each and may contain more than one part. Question 1 will be of 15 marks and consists of short answer type questions of 2 to 3 marks each covering the entire syllabus.

2. The candidate will be required to attempt five questions in all i.e. selecting one question from each section including the compulsory question. The duration of the examination will be 3 hours.

Unit No.	Contents	Contact Hrs.
I	MOLECULAR SYMMETRY, POINT GROUPS AND CHARACTER TABLES Symmetry elements and symmetry operations, symmetry groups with examples from inorganic compounds, groups of very high symmetry, molecular dissymmetry and optical activity, molecular symmetry for compounds having coordination number 2 to 9, matrix representations of symmetry operators and their products. The great orthogonality theorem and its importance, character tables and there use in spectroscopy.	15
11	BONDING MODELS Valence bond theory, electroneutrality principle and its limitations. Crystal field theory, splitting of <i>d</i> -orbitals in octahedral, tetragonal, square planar and tetrahedral ligand environments. Ligand field theory, molecular orbital theory. MO treatment of simple diatomic (homo & hetero) and polyatomic systems. Spectroscopic electronegativity, concept of chemical hardness (η). Walsh diagrams (triatomic systems).	15

111	CHEMISTRY OF NON-TRANSITION ELEMENTS	15
	Structures and acidic behaviour of boron halides, Types and nomenclature of boron hydrides	
	(boranes), Wade's polyhedral skeleton electron pair theory (PSEPT). W. N. Lipscomb's STYX	
	rules and semi-topological structures of boranes. Preparation, and properties of boron	
	hydrides, carboranes, metalloboranes and metallocarboranes. Preparation, structure and	
	properties of boron-nitrogen, phosphorous-nitrogen, phosphorus-oxygen, sulphur-nitrogen	
	compounds, silicates, interhalogens, chlorofluorocarbons, pseudohalides and noble gas	
	compounds.	
IV	METAL CARBONYLS, NITROSYLS AND CLUSTERS	15
	Molecular orbital diagram of carbonyl, classification of metal carbonyls, bonding in metal	
	carbonyl, valence electron count (EAN rules), preparation and properties of mononuclear and	
	polynuclear carbonyl complexes, bond lengths and stretching frequencies, carbonylate ions,	
	carbonyl hydride complexes, isolobal fragments, structure and important reactions of	
	transition metal nitrosyls. Bonding, preparation and properties of dinuclear metal cluster	
	(dirhenium complex $[Re_2Cl_8]^{2^-}$ ions), trinuclear and hexanuclear metal clusters.	
Sugge	sted Readings:	
1	. G. L. Miessler, P. J. Fischer and D. A. Tarr, Inorganic Chemistry, 5 th Edition. <i>Pearson</i> , 2014.	
2	. B. N. Figgis and M. A. Hitchman, Ligand Field Theory and Its Applications, <i>Wiley-India</i> , 2010.	
3	. J. E. House, Inorganic Chemistry, Academic Press, 2008.	
4	J. E. Huheey, E. A. Keiter, R. L. Keiter, O. K. Medhi, Inorganic Chemistry: Principles of Structure a	and Reactivity,
	4 th Edition. <i>Pearson Education</i> , 2006.	
5	. F. A. Cotton and Wilkinson, Advanced Inorganic Chemistry, 6 th Edition. <i>John Wiley</i> , 2006.	
6	. D. F. Shriver, P.W. Atkins and C.H. Landgord, Inorganic Chemistry, 3 rd Edition. Oxford Universit	y Press, 1998.
7	7. N. N. Greenwood and E. A. Earnshaw; Chemistry of elements, 2 nd Edition. Butterworth- Heiner	mann, 1997.
8	5. J. D. Lee, Concise Inorganic Chemistry, <i>Chapman & Hall Ltd.</i> , 1991.	
9	. F. A. Cotton, Chemical Applications of Group Theory, 3 rd edition. <i>John Wiley & Sons</i> , 1990.	

INORGANIC CHEMISTRY PRACTICAL-I

Course	e No:	Course Name:		Course Code: 081401001 P						
CH-04		Inorganic Chemist	ry Practical-I							
Batch: 2024		Programme:	Semester:	L	Т	Р	Credit	Contact H per Week	rs. :	04
onward	ds	M.Sc. Chemistry	I	0	0	4	2	Total Hou	rs:	60
Total E	valuatio	on Marks: 50	Examinatio	camination Duration: 6 Hrs.						
			Pre-requisit compounds	e of course , handling of	: Knowled glassware	dge of bond e and plasti	ding mode c ware in la	ls in coordi aboratory.	natio	on
Course Object	To impart knowledge about water analysis and preparation of popular coordination comple						olexe	25.		
Course	9	After completing th	is course, stu	dent is expe	cted to lea	arn the follo	wing:			
Outcor	mes:	CO1: Analysis of wa	ter samples a	vailable rout	inely					
		CO2: Determination	DO, COD and	d BOD in wat	er sample	es				
		CO3: Determination	of solid impl	urity and turl	bidity pres	sent in wate	er samples			
		CO4: Preparation of CO5: Appreciate the	mornhology	and color of	coordina	tion comple	axes			
		CO6: Basic knowled	ge of inorgan	ic preparatio	n	cion compi				
			C	OURSE SYL	LABUS					
NOTE:										
Two qu	uestions	will be set, one from	each of the L	JNIT. The car	ndidates a	re required	to attemp	t all the que	estio	ns.
Unit No.				Contents	5			Co	onta	ct Hrs.
I	WATE	R ANALYSIS							2	5
	1.	Determination of di	ssolved oxyge	en, DO of a g	iven wate	r sample.				
	2.	Determination of ch	nemical oxyge	en demand, (COD of a g	iven water	sample.			
	3. ⊿	Determination of bi	ological oxygi tal suspende	en demand, disolids and [.]	BOD OF a ;	given water	sample.			
	 5.	Determination of tu	rbidity of a w	ater sample	by nephlo	ometer.	•			
	6.	Determination of pr	esence of Ca ²	⁺ , Mg ²⁺ , Fe ³⁺	and Fe ²⁺ i	ons of a give	en water sa	mple.		
П	PREPA	RATIONS AND RELAT	ED COMPLEM	VENTARY W	ORK (AN)	(SIX)			3	5
	1. R	einecke Salt								
	2. V	O(acac) ₂								
	3. IV	'IN(acac) ₃ russian Pluo/Turnhull	's Pluo							
	4.Р 5.Н	g[Co(NCS)₄]	2 DING							
	6. P	otassium trioxalatofe	rate (III) Trihy	vdrate						
	7. P	otassium trioxaltochr	omate (III)							
	8. C	is, trans-dichlorobis(e	thylenediam	mine)cobalt(III)chlorid	e.				

Suggested Readings:

- 1. J. Bassett, R. C. Denney, G. H. Jeffery and J. Mendham, Vogel's Textbook of Quantitative Analysis, revised, 5thEdition.*ELBS*, 1989.
- 2. G. Svehla, Vogel's Textbook of Macro and Semimicro Qualitative Inorganic Analysis, revised, 5thEdition.Longman, 1979.
- 3. Marr and Rocket, Practical Inorganic Chemistry, *Van Nostrand Reinhold*, 1972.

ORGANIC CHEMISTRY-I

Course	No:	Course Name:				Course Code: 081401002					
CH-02		Organic Chemistry	/-l								
Batch:		Programme:	Semester:	L	т	Р	Credit	Contact Hrs.			
2024								per Week:	04		
onward	s	M.Sc. Chemistry		4	0	0	4	Total Hrs.:	60		
Total Ev	aluatio	on Marks: 100	Examinatio	n Duration:		3 Hrs.					
			Pre-requisit	te of course:	Basic kno	wledge of c	hemical bo	onding, theories	of		
			bonding, ste	ereochemistr	y, reactio	n mechanisi	ms and rea	ctive intermedi	ates.		
Course		To provide the basic	s in Organic (Chemistry at t	he beginn	ing of the se	emester. A	t the end of this	course,		
Objectiv	ve	students will gain	the knowledg	ge about the	nature o	f bonding i	n organic	molecules, delo	calized		
		chemical bonding, a	aromaticity, s	tereochemist	ry, such a	is conforma	tion and co	onfiguration, RS	and EZ		
		notations and mechanistic aspects of aliphatic and aromatic nucleophilic substitution and									
-		electrophilic aromatic substitutions and elimination reactions.									
Course		After completing th	is course, stu	ident is expe	cted to lea	arn the follo	wing:				
Outcom	nes:	CO1: Advanced unc	lerstanding o	f the concept	s delocali	sation, conj	ugation an	d aromaticity			
		CO2: Advanced kno	wledge of su	pramolecula	⁻ chemistr	y and non-o	covalent bo	onding			
		CO3: Advanced kno synthesis	owledge of co	onformationa	al analysis	, dynamic s	tereochen	nistry and asym	metric		
		CO4: In-depth unde	erstanding of	all classes of	nucleoph	ilic substitut	tion reaction	ons			
		CO5: Fundamental	and advanced	d knowledge	eliminatio	on reactions	and its ste	ereochemical as	pects		
		CO6: Detailed mech	nanistic know	ledge of aror	natic subs	titution rea	ctions				
		I	C	OURSE SYLI	ABUS						
Note for	r Exam	iners and Students	:								
1. The qu	uestion	paper will consist of	four sections	A, B, C & D. I	Examiner	will set nine	e questions	in all, selecting	two		
question	s from s	section A, B, C, and D	of 15 marks	each and ma	y contain	more than	one part. (Question 1 will b	e of 15		
marks an	nd consi	sts of short answer t	ype question:	s of 2 to 3 ma	arks each	covering the	e entire syl	labus.			
2. The ca	ndidate	e will be required to a	attempt five o	questions in a	all i.e. sele	cting one q	uestion fro	om each section			
including	g the co	mpulsory question. T	he duration o	of the examir	nation will	be 3 hours	•				
Unit				Contents				Conta	ct Hrs.		

Unit	Contents	Contact Hrs.
No.		
I	NATURE OF BONDING IN ORGANIC MOLECULES	15
	Delocalized chemical bonding-conjugation, cross conjugation, resonance, rules of resonance, effect on reactivity, hyperconjugation, tautomerism; Energy level of π -molecular orbitals, Aromaticity in benzenoid and non-benzenoid compounds, alternant and non-alternant hydrocarbons, Hückel's rule, annulenes, anti-aromaticity, homo-aromaticity; bonding in fullerenes. Fundamentals of Supramolecular Chemistry, Bonds weaker than covalent- addition compounds, crown ether complexes and cryptands, inclusion compounds, catenanes and rotaxanes.	
П	STEREOCHEMISTRY	15
	<i>Conformational analysis</i> : Simple alkanes, cycloalkanes, A values, decalins, conformational lock, ring strain, effect of conformation on reactivity.	

	Chirality: Basic principles, molecules with more than one chiral center, threo and	
	erythroisomers, Optical activity in the absence of chiral carbon (biphenyls, allenes and	
	spiranes); Stereochemistry of the compounds containing nitrogen, sulphur and	
	phosphorus. Methods of resolution, optical purity, enantiotopic and diastereotopic atoms,	
	groups and faces, stereospecific and stereoselective synthesis. Asymmetric synthesis: basic	
	principles, chiral pool, auxiliary, substrate, reagent and catalyst controlled.	
III	ALIPHATIC NUCLEOPHILIC SUBSTITUTION AND ELIMINATION REACTIONS	15
	a) Aliphatic Nucleophilic Substitution Reactions:	
	The $S_N 2$, $S_N 1$, mixed $S_N 1$ and $S_N 2$ and SET Mechanisms. The neighbouring group mechanism,	
	neighbouring group participation by π and σ bonds. Classical and nonclassical carbocations,	
	phenonium ions, norbornyl system, common carbocation rearrangements. The S_{N}^{\prime}	
	mechanism. Nucleophilic substitution at an allylic, aliphatic trigonal and a vinylic carbon.	
	Reactivity effects of substrate structure, attacking nucleophile, leaving group and reaction	
	medium, phase transfer catalysis and ultrasound, ambident nucleophile, regioselectivity.	
	b) Elimination Reactions:	
	The E2, E1 and E1cB mechanisms. Orientation of the double bond. Reactivity – effects of	
	substrate structures, attacking base, the leaving group and the medium.	
IV	AROMATIC SUBSTITUTION REACTIONS	15
	a) Aromatic Electrophilic Substitution:	
	The arenium ion mechanism, orientation and reactivity. The ortho/para ratio, ipso attack,	
	orientation in other ring systems. Friedel-Crafts reaction, Diazonium coupling, Vilsmeir	
	h) Aromatic Nuclean hills Substitution:	
	b) Aromalic Nucleophilic Substitution: The S Ar diagonium solts and honzung machanisms. Deastivity, offect of substrate structure	
	The S_N , didzonium saits and benzyne mechanisms. Reactivity-effect of substrate structure,	
	reaving group and attacking nucleophile. The von Richter, Sommelet-Hauser and Similes	
Suggor	teal langements.	
Jugges	S. M. Mukharii and S. D. Singh Poaction Mechanism in Organic Chemistry, Povised Edition / [Povisod by S. D.
1.	Singh and Om Prakash) TRINITY Press An Imprint of Laymi Publications Byt 1td 2015	VEVISEU DY S. F.
2	B N Boyd B T Morrison and S K Bhattchariee Organic Chemistry 7 th Edition <i>Pearson</i> 201	Δ
2.	M. R. Smith March's Advanced Organic Chemistry: Reactions, Machanisms and Structure, 7 th	Edition Wilow
5.	M. B. Smith, March's Advanced Organic Chemistry: Reactions, Mechanisms and Structure, 7	Eultion. wiley,
	2013.	
4.	J. Clayden, N. Geeves and S. Warren, Organic Chemistry, Oxford University Press, 2012.	
5.	E. L. Eliel and S. H. Wilen, Stereochemistry of Organic Compounds, Wiley India, 2008.	
6.	F. A. Carey and R. J. Sundburg, Advanced Organic Chemistry PART A, Springer 2007.	
7.	P. Y. Bruice, Organic Chemistry, 7 th Edition. <i>Pearson,</i> 2007.	
8.	D. Nasipuri, Stereochemistry of Organic Compounds, Second Edition. New Age International,	2005.
9.	P. Sykes, A Guidebook to Mechanism in Organic Chemistry, <i>Longman</i> , 1985.	
L		

ORGANIC PRACTICAL-I

Course N	o :	Course Name:			Course Code: 081401002 P					
CH-05		Organic Chemistry	y Practical-I							
Batch:		Programme:	Semester:	L	Т	Р	Credit	Contact I	Hrs.	
2024								per Wee	k:	04
onwards		M.Sc. Chemistry	I	0	0	4	2	Total Ho	urs:	60
Total Eval	uatio	n Marks: 50	Examinatio	n Duratior	n: 6 H	rs.	·	·		
			Pre-requisit practices; ba	e of cour	se: Basic id uch as weig	ea of chen hing, meas	nical labora uring, titrat	atory safet ing, cleanir	y and ng etc.	good
CourseTo acquire experiObjectivefunctional group idlearn the various pcompounds, solverbe familiarized with			mental skills entification a urification m t drying and quantitative	importan nd drying c ethods, ch functional analysis oj	t for vario of organic sc romatograp group dete forganic col	us separat olvents. At t ohic separa ction in org mpounds to	ion and p he end of th tion and ia ganic comp estimate t	urification his course, s lentificatior ounds. Stud he percentc	techn studen n of ol dents nge of	iques, ts will rganic would given
CourseAfter completing the CO1: Safe laborator CO2: Purification te CO3: Purification te CO4: Qualitative ar CO5: Tests to deter		is course, stury conduct an chniques for chniques for alysis of unkr mine the vari analysis of cor	dent is exp d good pra solids such liquids such nown samp ous eleme mpounds t	pected to le actices n as crystalli ch as distilla oles to dete ents present o estimate	arn the foll sation, subl tion and ch rmine the fu in an orgar the percent	owing: limation an romatogra unctional g nic compou age of func	d chromato phy roups nd ctional grou	ograph Ips	ıy	
			CO	URSE S	YLLABUS					
NOTE:										
Two questi	ons w	ill be set, one from eac	h of the UNIT.	The candid	ates are requ	ired to atter	mpt all the q	uestions.		
Unit No.				Conter	nts				Cor н	itact
1	ISO	LATION AND PURIFIC	CATION TECH	NIQUES						30
	Lab	oratory Safety								.0
	Crys	stallization, recrystall	lization and s	ublimatior	ı					
	Dist	illation: Simple, Stea	m and Vacuu	m						
	Solv	ent Extraction								
	Dry	ing of ethanol/ aceto	ne/ diethylet	her/THF						
	Рар	er Chromatography								
	Thir	n Layer Chromatogra	phy							
11	AN/	ALYSIS OF ORGANIC	COMPOUND	S					3	30
		ALITATIVE ANALYSIS:	- المحم م	ations						
	Cne	mical Tests: Chemist	ry and Applic							
		a elements detection	(IN, S, X = CI)	Br, I)	compound	•1				
			011011111010 <-	unctional	compounds)				
	QUANTITATIVE ANALYSIS:									

Estimation of alcoholic/phenolic/amino groups in the given organic compound

Suggested Readings:

- 1. K. L. Williamson and K. M., Masters Macroscale and Microscale Organic Experiments, 7th Edition. *Cengage Learning*, 2017.
- 2. R. K. Bansal, Laboratory Manual in Organic Chemistry, *Wiley*, 2006.
- 3. B. S. Furniss and others, Vogel's Text Book of Practical Organic Chemistry, 5e Paperback, *Pearson*, 2003.
- 4. D. Pasto, C. Johnson and M. Miller, Experiments and Techniques in Organic Chemistry, *Prentice Hall*, Instructor's Edition, 1992.
- 5. H. T. Clarke revised by B. Haynee, A Hand book of Organic Analysis-Qualitative and Quantitative, *Edward Arnold, London*, 1975.
- 6. H. Middleton, Systematic Qualitative Organic Analysis, *Edward Arnold, London*, 1959.

PHYSICAL CHEMISTRY-I

Course No:	Course Name: Physical Chemistry-I					Course Code: 081401003			
CH-03									
Batch:	Programme:	Semester:	L	Т	Р	Credit	Contact Hrs.		
2024							per Week:	04	
onwards	M.Sc. Chemistry	I	4	0	0	4	Total Hrs.:	60	
Total Evalua	tion Marks: 100	Examination Dura	ation:	3 Hrs.					
		Pre-requisite of c	ourse: Know	ledge of b	asic chemi	stry up to U	lG level.		
Course Objectives	To provide students with a and principle of quantum thermodynamics and quan	basic understanding mechanics. This cou tum chemistry.	g of thermod urse will stre	ynamics, f ngthen th	fugacity, ph ne fundame	ase rule, es entals of Ph	sentials of chem ysical Chemistry	ical kinetics v, especially	
Course	After completing this cour	se, student is expec	ted to learn	the follow	/ing:				
Outcomes:	CO1 : Basic understanding	of physical chemist	ry.						
	CO2: Use of thermodynam	ics and chemical ki	netics in dail	y life.					
	CO3 : Skills for analyzing an	d developing new s	sustainable m	nethods.					
	CO4 : Skills for developing i	ndustrially importa	nt methods.						
	CO5 : Development of alter	nate and new theo	retical meth	ods.					
	CO6 : Use of advanced and	recent technologie	s in physical	chemistry	<i>.</i>				
	COURSE SYLLABUS								

Note for Examiners and Students:

1. The question paper will consist of four sections A, B, C & D. Examiner will set nine questions in all, selecting two questions from section A, B, C, and D of 15 marks each and may contain more than one part. Question 1 will be of 15 marks and consists of short answer type questions of 2 to 3 marks each covering the entire syllabus.

2. The candidate will be required to attempt five questions in all i.e. selecting one question from each section including the compulsory question. The duration of the examination will be 3 hours.

Unit No.	Contents	Contact Hrs.
I	INTRODUCTION TO PHYSICAL CHEMISTRY AND CLASSICAL THERMODYNAMICS	15
	Logarithmic relations, Curve sketching and linear graphs, calculation of slopes, terms of mean and	
	median, Precision and accuracy in chemical analysis, types of error, standard deviation, Numerical	
	Problems.	
	Classical Thermodynamics:	
	Its Laws, Maxwell's relations; spontaneity and equilibria; temperature and pressure dependence of	
	thermodynamic quantities like entropy, enthalpy, free energy; Gibb's-Duhem equation; Clausius-	
	Clapeyron equation, Nernst heat theorem, Chemical potential and Work Function.	
П	ACTIVITY, FUGACITY, PHASE RULE	15
	Concepts of fugacity, fugacity of gases and its determination. Activity and activity coefficient, choice of	
	standard states, determination of activity coefficient for solute and solvent.	
	Phase Rule:	

		Phase Rule and its determination, application. Phase diagram for one component system for two	
		completely miscible components systems like Ph-Ag system $KI+ H_2O$ system Bi-Cd system Ferric	
		chloride + water system, Sodium chloride + water system, Na ₂ SO ₄ -H ₂ O system.	
		CHEMICAL KINETICS-I	15
		Introduction to Chemical Kinetics: Methods of determining rate laws, Arrhenius equation and its	
		theory, Collision theory, and activated complex theory.	
		Chain Reactions: Hydrogen-bromine reaction, Pyrolysis of acetaldehyde, Decompositions of ethane. Photochemical reactions (hydrogen-bromine and hydrogen-chlorine reactions). General treatment of chain reaction (hydrogen- bromine reactions), Apparent activation energy of chain reactions, Chain length, Rice-Herzfeld mechanism of organic molecules decomposition (acetaldehyde).	
IV	'	PRINCIPLES OF QUANTUM MECHANICS	15
		Introduction to Quantum Mechanical Approach, Quantum Mechanical operators, Eigenvalues of	
		Quantum Mechanical operators, Hermitian operator, Ladder operator, commutation relations,	
		postulates of quantum mechanics and Uncertainty Principle. Dirac delta function, Uncertainty in	
		position and momentum, Schrödinger equation for finding wave function of a particle, Energy of a	
		particle in One-Dimension box, Extension to Schrödinger equation for finding wave function in a three-	
		dimensional box, Energy of a particle in Three-Dimension box, Energy levels, Eigenvalue, concept of	
		degeneracy and selection rules.	
Sugges	sted R	eadings:	
1.	J.P. I	Lowe, and K. Peterson, Quantum Chemistry, Academic Press, 2019.	
2.	Н. К	Moudgil, Textbook of Physical Chemistry, PHI Publication House, New Delhi, 2015.	
3.	P. At	kins and J. Paula, Atkins' Physical Chemistry, 10 th Edition. Oxford University Press, 2014	
4.	I. N.	Levine, Quantum Chemistry, 7 th Edition. <i>Pearson Education</i> , 2013.	
5.	I. N.	Levine, Physical Chemistry, 6 ^{th E} dition. <i>Tata Mcgraw-Hill Education</i> , 2011.	
6.	D. N	Icquarie and J. Simon, Physical Chemistry-A molecular approach, 1 st Edition. <i>Viva</i> , 2010.	
7.	R. K.	Prasad, Quantum Chemistry, New Age International, 2010.	
8.	A. K.	Chandra, Introductory Quantum Chemistry, Tata McGraw-Hill, 2008.	
9.	K. J.	Laidler, Chemical Kinetics, 3 rd Edition. <i>Pearson Education</i> , 2007.	
10.	E. Kr	eyszig, Advanced Engg. Mathematics, John Wiley & Sons, Inc. 2006.	

PHYSICAL CHEMISTRY PRACTICAL-I

Course	Course Name:				Course Code: 081401003 P						
No:	Physical Chemistry Pra	ctical-I									
CH-06			1								
Batch:	Programme:	Semester:	L	Т	Ρ	Credit	Contact Hrs.	04			
2024 opwards	MSc Chamistry		0	0	Λ	2	per Week:	60			
Total Evalua	tion Marks: 50	I	U	0	4	Z		60			
i otai Lvaiua		Examination Duration: 6 Hrs.									
Pre-requisite of course: Knowledge of solution preparation, safety practical laboratory and basic practical knowledge up to UG level.								emistry			
Course	To train students with int	roductory physi	cal d	cher	nist	try practical like adsorption, saponification va	alue, molecular	weight			
Objectives	determination, surface te	ension, viscosity	, dis	tribu	utio	on law and thermochemistry.					
Course	After completing this cou	urse, student is e	expe	ecte	d to	elearn the following:					
Outcomes:	CO1: Basic understandin	g of practical ph	ysic	al cł	nem	nistry.					
	CO2 : Use of surface tens	ion, viscosity, ac	lsor	ptio	n ir	n daily life.					
	CO3 : Skills for analyzing	and developing	nev	V SU	stai	nable methods.					
	CO5 : Development of alt	ernate analytica	al m	anı əthc	hi a vyc						
	CO6 : Use of advanced an	d recent techni	que	s in	exp	erimental chemistry.					
			CC	OUR	SE	SYLLABUS					
NOTE					-						
Depending c	on availability of time and o	equipment som	e ex	peri	me	nts may be added/deleted.					
Unit No.		••		Co	ont	ents	Contact H	lrs.			
I	HANDS ON TRAINING IN Partial Molar Quantities	PHYSICAL CHEI	MIS.	FRY	EXI	PERIMENTS	30				
	• To determine the	e partial molar v	volu	me	ofι	urea and ethanol in aqueous solution from					
	density measure	ments.				·					
	, Adsorption										
	 To determine th 	e adsorption is	othe	erms	s of	acetic acid from aqueous solution and I_2					
	from alcoholic sc	olution by charco	oal.			·					
	• To investigate	the adsorption	of	oxal	lic :	acid from aqueous solution by activated					
	charcoal and to	examine the val	idity	of I	Frei	undlich & Langmuir's adsorption isotherms.					
	Acid and Saponification \	/alue				2					
	• To find out the a	cid value of a giv	ven	sam	ple						
	• To find out the s	aponification va	lue	of gi	iver	n vegetable oil.					
	Molecular Weight of Poly	ımer		2							
	Molecular Weight of Polymer										

П	BASICS PHYSICAL CHEMISTRY EXPERIMENTS	30
	Surface Tension/Interfacial Tension	
	• To find surface tension/interfacial tension between two immiscible liquids.	
	• To determine the percentage composition of a given mixture of two liquids say CCl ₄	
	and Toluene by surface tension method.	
	Viscosity	
	 To find viscosity and coefficient of viscosity of unknown liquids by Ostwald's viscometer method. 	
	• To determine the percentage composition of given unknown mixture by viscosity method.	
	Distribution Law	
	• To study the distribution of benzoic acid, I ₂ , succinic acid between organic liquid and	
	water at room temperature and show that whether BA, I ₂ , Succinic acid dimerizes in	
	organic liquid or water.	
	Thermochemistry	
	• To determine the heat of neutralization of sulphuric acid using Dewar's vacuum flask	
	as the calorimeter.	
	• To determine the heat of ionization of a weak base i.e. NH ₄ OH using calorimeter.	
Sugges	ted Readings:	
1.	B. Viswanathan and P. S. Raghavan, Practical Physical Chemistry, <i>M V Learning</i> , 2017.	
2.	Shoemaker and Garland, Experiments in Physical Chemistry, McGraw Hill, 2015.	
3.	B. D. Khosla, V. C. Garg and Adarsh Gulati, Senior Practical Physical Chemistry, R. Chand & Co., New D	elhi, 2014.
4.	Saroj Kumar Maity, Naba Kumar Ghosh, Physical Chemistry Practical, New Central book Agency, 2012	
5.	G. P. Mathews, Experimental Physical Chemistry, 1 st Edition. <i>Oxford University Press</i> , 1995.	
6.	A. M. James and F. E. Prichard, Practical Physical Chemistry, Lomgman, 1994.	
7.	B. P. Levitt, Findley's Practical Physical Chemistry, 9 th Edition. <i>Longman Group Ltd.</i> , 1993.	
8.	J. B. Yadav, Advanced Practical Physical Chemistry, Goel Publishing House, 1991.	
9.	R. C. Das and B. Behara, Experimental Physical Chemistry, Tata McGraw Hill, 1984.	

DISCIPLINE CENTRIC ELECTIVE COURSES (DCEC)

REACTION MECHANISM: STRUCTURE AND REACTIVITY

Course	Course Name:			Course Code:081401004					
No:	Reaction Mechanism: Struc								
CH-43									
Batch:	Programme:	Semester:	L	т	Р	Credit	Contact Hrs.	02	
2024 opwards	MSc Chemistry		2	0	0	2	Total Hrs.	20	
Uliwalus	Wi.Sc. Chemistry	•	Z	0	0	2		50	
Total Evalua	tion Marks: 50	Examination Duration: 2Hrs.							
	Pre-requisite of course: Basic and advance knowledge of Physical Orga								
Course	To provide a basic and advance	d knowledge of physical of	rganic ch	emistry	including	g a better underst	anding of a rea	ction	
Objective	mechanism, kinetic and non-k	inetic methods, the differ	ent types	s of reac	tive inter	mediates involve	d during a cher	nical	
-	reaction, and kinetic and ther	nodynamically controlled	l reaction	<i>15.</i>					
Course	After completing this course, s	student is expected to lea	irn the fo	ollowing	:				
Outcomes:	CO1 : Fundamental understand	aing of a reaction mechar	ing a cho	micalr	action				
	CO3 : Basic knowledge of a kin	etic and thermodynamic	controlle	n nrodu	ict forma	ation			
	CO3 . Basic knowledge of a kinetics and non-kinetics method to study a reaction mechanism								
	CO5 : Idea about the correlation	on of stereochemistry and	l mechar	nism					
	CO6: Advanced knowledge ab	out general physical orga	nic chem	nistry pr	inciples				
		COURSE S	YLLAB	US					
Note for Exa	miners and Students:								
1. The question	on paper will consist of four sec	tions A, B, C & D. Examin	er will se	t nine c	luestions	in all, selecting t	wo questions f	rom	
section A, B, (C, and D of 8 marks each and m	ay contain more than one	e part. Q	uestion	1 will be	of 8 marks and c	onsists of shor	t	
answer type o	questions of 2 to 3 marks each o	covering the entire syllab	us.						
2. The candid	ate will be required to attempt	five questions in all i.e. s	electing	one que	estion fro	m each section ir	cluding the		
compulsory q	uestion. The duration of the ex	amination will be 2 hours	5.						
Unit No.		Contents					Contac	ct	
							Hrs.		
•	Fundamentals of stereoelect	tronic effects and read	tivitv a	cids ar	nd hases	reaction type	s /		
	intermediates and transition s	tate effect of temperatu	reand ca	atalvete		, reaction type	5,		
11	REACTIVE INTERMEDIATES	mation stability and re	actions	of carb	ocations	carbanions fro	ŏ		
	introduction to structure, formation, stability and reactions of carbocations, carbanions, free								
			es and nit	renes.					
111	CHEMICAL EQUILIBRIA AND R	EACTIVITY	ation of	rooct:	±۔ ماھ¦ریں رو	wystyre linearfu	7		
	energy relationships Hammo	nd's postulate Curtin-Ha	nmett n	rinciple	ly with St	nucture, inear fre	e		
	כחכוצע וכומנוטווצווועט, וומוווווטו	ia s postulate, cui tili-fidi	innett pi	incipie.					

IV	KINETICS AND NON-KINETIC METHODS TO STUDY MECHANISM	8
	Kinetic methods: primary and secondary kinetic isotopic effects, isotopic labeling; non-kinetic	
	methods: detection and interception of intermediates, systematic structural variation,	
	stereochemical studies and cross-over experiments.	
Suggested	Readings:	
1. F. /	A. Carey and R. J. Sundberg, Advanced Organic Chemistry, Part A, 5 th Edition, Springer, 2012.	
2. E.V	/. Anslyn and D. A. Dougherty, Modern Physical Organic Chemistry, University Science Books, 2005.	
3. Wa	rren, S.; Greeves, N.; J. Clayden and P. Wothers, Organic Chemistry, 2 nd Edition, Oxford University Pres	s, 2001.
4. J. N	/larch, Advanced Organic Chemistry, Reactions, Mechanisms and Structure, 4 th Edition, John-wiley, 199	9.
5. N.	S. Isaacs, Physical Organic Chemistry, 2 nd Edition, Longman Scientific & Technical, 1995.	
6. P.S	Sykes, A guidebook to Mechanism in Organic Chemistry, 5 th Edition, Longman Scientific Technical, 1985	
7. P.I	Deslongchamps, Stereoelectronic Effects in Organic Chemistry, Pergamon, 1983.	

DISCIPLINE CENTRIC ELECTIVE COURSES (DCEC) NUCLEAR CHEMISTRY

Course	Course Name:				Course	Code:0814010	05	
No:	Nuclear Chemistry							
CH-44								
Batch:	Programme:	Semester:	L	Т	Р	Credit	Contact Hrs	5.
2024	_						per Week:	02
onwards	M.Sc. Chemistry	I	2	0	0	2	Total Hrs.:	30
Total Evalua	tion Marks:50	Examination Durati	on:	2	Hrs.			
		Pre-requisite of co radioactivity and ap	<i>urse:</i> To plication	provide s.	e the basi	c knowledge of	nuclear stru	ctures,
Course Objectives	To provide the basics of nucle radiopharmacy and chelation	ar structures, radiat. therapy.	ions, arti	ficial ra	dioactivit	y and applicatio	ns of nuclear	chemistry,
Course Outcomes:	After completing this course, s CO1 : Basic understanding of n CO2 : To identify and understan CO3 : Measurement of radioac CO4 : Artificial radioactivity CO5 : To understand chelation CO6 : Applications of nuclear cl	tudent is expected to uclear structure nd various nuclear re tivity therapy nemistry	o learn th actions	ie follov	ving:			
		COURSE	SYLLAB	US				
Note for Exa	miners and Students:							
 The c quest mark 2. The canc compulsory q 	uestion paper will consist of f ions from section A, B, C, and s and consists of short answer didate will be required to attem uestion. The duration of the ex	our sections A, B, C our sections A, B, C our sections and a sech and type questions of 2 pt five questions in a amination will be 2 h	& D. Exa nd may o to 3 ma Il i.e. selo ours.	miner v contain rks eacl ecting o	vill set ni more tha h coverin ne questio	ne questions in n one part. Que g the entire syll on from each sec	all, selecting stion 1 will b abus. ction includin	two be of 8 g the
Unit No.		Co	ontents				Co	ontact Hrs.
Ι	NUCLEAR STRUCTURE							7
	Composition of the nucleus,	nuclear size, shape	and der	nsity, th	eories of	nuclear compo	sition,	
		es of nucleus, nuclea	r spin an	u parity	, nuclear l	binding forces.		0
11	Penetration potential, nucle bombardment of nuclei, nucle Szilard–Chalmer's effect, fuel	ar binding energy, ar fission, nuclear fus cycle and waste mana	nuclear sion, nuc agement	r emiss lear exp , reacto	ions, nuo losives, nu r power co	clear transform uclear reactors ir ontrol.	ations, 1 India,	0

111	RADIOACTIVITY Radioactive decay and growth, naturally occurring and artificially produced radioactive substances, Measurement of radioactivity, group displacement law, radioactive disintegration series, rate of disintegration, half-life, average life of radioactive elements, unit of radioactivity, nuclear decay, determination of decay constants, decay rates, types of nuclear decay.	7
IV	ARTIFICIAL RADIOACTIVITY AND APPLICATIONS OF NUCLEAR CHEMISTRY Discovery of artificial radioactivity, isotopes used in medicines, radiocarbon dating, age determination, effects of radiation on life, applications of tracer element in medical, agriculture and analytical fields, biological effects of radiation, radiation protections, chelation therapy.	8
Suggested F	leadings:	
1. G.F 2. W.I	riedlander, J. W. Kennedy, E. S. Macias; Nuclear and Radiochemistry, 3 rd Edition. <i>Willey</i> , 2013. D. Loveland, D. Morrissey and G. T. Seaborg, Modern Nuclear Chemistry, <i>John Wiley & Sons</i> , 2006.	

- 3. C. E. Housecroft and A. G. Sharpe; *Inorganic Chemistry*, 2ndEdition.*Pearson*, 2005.
- 4. H. J. Arnikar, Essentials of Nuclear Chemistry, Wiley Eastern, 1988.

GE- CHEMISTRY FOR BIOLOGIST

Course	Course Name:				Course	Code: 08140	01006	
No:	Chemistry for Biologists							
CH-58								
Batch:	Programme:	Semester:	L	т	Р	Credit	Contact Hrs.	
2024							per Week:	04
onwards	P.G. (Generic Elective Course)	I	4	0	0	4	Total Hrs.:	60
Total Evalua	tion Marks:100	Examination Dur	ation:		3 Hrs.			
		Pre-requisite of o	course: N	None				
Course	To provide an opportunity to learr	some basic conce	ots of ch	emistry	importar	nt for biologists	s.	
Objectives	To provide the knowledge of UV	-vis., IR and ¹ H-N	MR spe	ctrosco	ору			
Course	After completing this course, stud	ent is expected to	learn th	e follow	ving:			
Outcomes:	CO1 : Basic understanding of some	important concep	ts of che	emistry				
	CO2 : Understanding of formulae v	vriting and stereod	hemistr	y of org	anic comp	pounds		
	CO3: Important aspects associate	d with other branc	hes of so	ience				
	CO4: Skills to interpret data of org	anic compounds u	sing adv	anced s	pectral te	chniques		
	CO5: Ability to communicate about	it chemical science	s across	the fiel	ds			
	CO6 : Ability to analyse, design and	solve problems						
		COURSE S	YLLABI	JS				

Note for Examiners and Students:

1. The question paper will consist of four sections A, B, C & D. Examiner will set nine questions in all, selecting two questions from section A, B, C, and D of 15 marks each and may contain more than one part. Question 1 will be of 15 marks and consists of short answer type questions of 2 to 3 marks each covering the entire syllabus.

2. The candidate will be required to attempt five questions in all i.e. selecting one question from each section including the compulsory question. The duration of the examination will be 3 hours.

Unit No.	Contents	Contact Hrs.
1	SOME BASIC TERMS AND CONCEPTS	15
	Mole concept and Stoichiometry. Solution and different methods of expressing the concentration of	
	a solution. Chemical bonds: Ionic, covalent, coordinate and metallic bonds. Shapes of the molecules,	
	Polarized chemical bonds and polarity in the molecules. Intermolecular forces: Dispersion, dipole-	
	dipole, hydrogen bonds, ion-dipole forces and their effect on the properties of the compounds.	
	Biological implications of hydrogen bonding. Problems based on given topics.	
II	STEREOCHEMISTRY	15
	Isomerism: Introduction, Formula writing, Structural and stereo isomerism, Conformations: analysis	
	of ethane, n-butane, cyclohexane and its derivatives, Configurational isomerism, Geometrical and	
	optical isomerism. Symmetry and chirality in the molecules having one or more than one chiral	
	center, R & S, D & L, threo and erythro nomenclature, enantiotopic and diastereotopic atoms, groups	
	and faces, stereospecific and stereoselective reactions. Problems based on given topics.	

111	CONCEPTS OF PHYSICAL CHEMISTRY	15
	Thermodynamics: Change in Internal energy, enthalpy, free energy and entropy. Endothermic and	
	exothermic processes. Exergonic and endergonic processes. Coupled biological processes.	
	Chemical Kinetics: Reaction rate and rate constant. Catalysts and catalysis. Enzymes as catalysts.	
	Enzyme inhibition.	
	, Chemical equilibrium: Equilibrium, equilibrium constant, Le Châtelier's principle and factors affecting	
	the principle, Aqueous Equilibria: Introduction, importance in biology, pH and pH control, Buffers and	
	their importance.	
IV	SPECTROSCOPIC TECHNIQUES	15
	Ultraviolet and visible (UV-vis) spectroscopy: Introduction, Principle and selection rules of UV	
	phenomenon, Various electronic transitions, Beer-Lambert law, presentation of spectrum, effect of	
	solvents on electronic transitions, ultraviolet bands for carbonyl compounds and unsaturated carbonyl compounds. Fieser-Woodward rules for conjugated dienes.	
	Infrared Spectroscopy: Introduction, Principle and selection rules of IR spectroscopy, Hookes law,	
	Characteristic vibrational frequencies of organic compounds. Overtones, combination bands and	
	Fermi resonance. Factors affecting the vibrational frequencies.	
	¹ H NMR: Principle, nuclear spin states, nuclear magnetic moments, mechanism of resonance,	
	chemical shifts, diamagnetic shielding, magnetic anisotropy, spin-spin splitting, coupling constant, ¹ H	
	NMR spectra of various simple organic compounds.	
Suggest	ed Readings:	
1.	B. R. Puri, L. R. Sharma and M. S. Pathania, Principles of Physical Chemistry,47th Edition. Vishal Publishing Co	o. <i>,</i> 2017.
2.	B. R. Puri, L. R. Sharma, K. C. Kalia, Principles of Inorganic Chemistry, 33rd Edition. Vishal Publishing Co., 2017	7.
3.	D. L. Pavia, G. M. Lampman, G. S. Kriz and J. R. Vyvyan, Spectroscopy, 5 th Edition. <i>Cengage Learning India</i> 2015.	Private Limited,
4.	P. S. Kalsi, Stereochemistry: Conformation and Mechanism, New Age International Private Limited, 2015.	
5.	S. M. Mukherji and S. P. Singh, Reaction Mechanism in Organic Chemistry, Revised Edition. (Revised by S. F	P. Singh and Om
	Prakash). TRINITY Press, An Imprint of Laxmi Publications Pvt. Ltd., 2015.	
6.	P. Atkins and J. Paula, Atkins' Physical Chemistry, 10 th Edition. Oxford University Press, 2014.	
7.	J. Clayden, N. Geeves and S. Warren, Organic Chemistry, Oxford University Press, 2012.	
8.	Morrison, Boyd and Bhattcharjee, Organic Chemistry, 7 th Edition, <i>Pearson</i> , 2010.	
9.	F. A. Carey and R. J. Sundburg, Advanced Organic Chemistry PART A., Springer, 2007.	
10.	D. Nasipuri, Stereochemistry of Organic Compounds, 2 nd Edition, <i>New Age International</i> , 2005.	
11.	K. J. Laidler, Chemical Kinetics, 3 rd Edition. <i>Pearson Education</i> , 1997.	

GE- CHEMISTRY OF MATERIALS

Course No: CH-59	Course Name: Chemistry of Materials				Course	Code:0814010	007			
Batch: 2024	Programme:	Semester:	L	Т	Р	Credit	Contact H per Week	rs. : 04		
onwards	P.G. (Generic Elective Course)	I	3	1	0	4	Total Hrs.	: 60		
Total Evalua	tion Marks:100	Examination Durat	ion:		3 Hrs.					
Pre-requisite of course: To provide basic nanomaterials and photophysical phenomena										
Course Objectives	To give a very basic understan phenomena with focus on energy	ding of Chemistry and environment.	of nand	omateri	als, poro	us materials ai	nd some ph	otophysical		
Course Outcomes:	After completing this course, student is expected to learn the following: CO1 : Basic understanding of nanomaterials CO2 : To understand the dramatic changes in properties that occurs by reducing the size CO3 : Characterization of nanomaterials CO4 : To impart knowledge on how to perform the synthesis of such small sizes and shapes of materials CO5 : Knowledge of fundamental of photophysical phenomena CO6 : Application of nanomaterials and photophysical phenomena									
		COURSE S	YLLABL	JS						
Note for Exa 1. The questic section A, B, (answer type o 2. The candid compulsory q	miners and Students: on paper will consist of four sectio C, and D of 15 marks each and may questions of 2 to 3 marks each cov ate will be required to attempt five uestion. The duration of the exam	ns A, B, C & D. Exam contain more than ering the entire sylla e questions in all i.e. ination will be 3 hou	iner wil one par Ibus. selectii Irs.	set nin t. Ques ng one d	e questio tion 1 wil question f	ons in all, selectin I be of 15 marks from each sectio	ng two ques and consist on including	tions from s of short the		
Unit No.		Con	tents				C	Contact Hrs.		
1	NANOMATERIALS 15 An Introduction, Elementary Consequences of Small Particle Size - Surface of Nanoparticles. 15 Classification of nanomaterials-zero dimensional (0D)-one dimensional (1D)-two dimensional (2D) 15 nanomaterials. Gas-Phase Synthesis of Nanoparticles - Physical and Chemical Vapor Synthesis Processes. Radio- and Microwave Plasma Processes. Flame Aerosol Process. Synthesis of Coated Particles. 15									
	Global Methods for Characteriza Transmission Electron Microscop Nanotubes, Nanorods, and Nanop Nanotubes and Nanorods from M	tion, X-Ray and Elect y. blates, One-Dimensio laterials other than	ron Diff onal Cry Carbon	fraction stals, G Synthe	, Electror raphene a sis of Nar	n Microscopy, Sc and Carbon Nand notubes and Nar	anning otubes. horods.	15		

III	HYBRID MATERIALS	15
	Coordination Polymers, Introduction, Classification of Coordination Polymers, Design Strategies of	
	Coordination Polymers-Metal Nodes and Linkers, Secondary Building Unit Concept, Topology and	
	Interpenetration, Synthesis of Coordination Polymers-Solvothermal/Hydrothermal, Sonochemical,	
	Microwave, Mechanochemical. Charaterization: X-ray diffraction and Spectroscopic Methods.	
	Applications of Coordination Polymers in Gas Storage, Gas Separation, Catalysis and Drug Delivery.	
IV	PHOTOPHYSICAL PHENOMENA	15
	Interaction of electromagnetic radiation with matter, Grotthus-Draper law, Stark-Einstein law of	:
	photochemical equivalence, quantum yield, electronically excited singlet states, life time of	:
	electronically excited state, construction of Jablonski diagram, electronic transitions and intensity of	:
	absorption bands, types of photophysical pathways, radiationless transitions, fluorescence emission,	
	phosphorescence emission, Fluorescence quenching, chemiluminescence, photochemical reactions.	
Suggest	ted Readings:	
1.	D. Vollath, Nanomaterials: An Introduction to Synthesis, Properties and Applications, 2 nd Edition. Wiley-VC	H, 2013.
2.	D. C. Agarwal, Introduction to Nanoscience and Nanomaterials. World Scientific, 2013.	
3.	S. R. Batten, S. M. Neville and D. R. Turner, Coordination Polymers: Design, Analysis and Application. RSC P	ublishing, 2009.
4.	MC. Hong and L. Chen, design and Construction of Coordination Polymers. Wiley, 2009.	
5.	S. Kaskel, The Chemistry of Metal-Organic Frameworks, Vol. 1, Wiley-VCH, 2016.	
6.	L. R. Macgillivray, Metal-Organic Frameworks: Design and Applications, Wiley, 2010.	
7.	W. D. Jr. Callister and D. G. Rethwisch, Fundamentals of Materials Science and Engineering: An Integrated	d Approach, John
	Wiley and Sons, 2012.	
8.	K. K. Rohatgi and K. K. Mukherjee; Fundamentals of Photochemistry, 3 rd Edition. New Age International (P)	Ltd., 2014.

SWACH BHARAT INTERNSHIP PROGRAMME

Course No: Course				Name: Course Code:						
CH-56			Activitie	s at Department ar	nd Unive	ersity L	evel*			
Batch:		Programme:		Semester:	L	Т	Α	Credit	Contact Hrs.	
2024 onward	ds								per Week: 7	
		M.Sc. Chemist	ry	I to IV	0	0	7	2	Total Hrs.: 1	.00
Total Evalua	tion Marks	Evaluation will	be done	Examination Durat	tion:	I	NA			
at departme	ntal level b	y giving the rem	arks as							
Excellent/Go	od/Satisfa	ctory/Poor		Pre-requisite of co	urse: No	ne				
Course	The m	ain objective of	this course	is to make the stud	ents awa	re abou	it the ii	mportand	e of cleanlines	ss for social
Objectives	develo	opment.								
Course	After	completing this	course, stu	ident is expected to	learn the	e follow	ing:			
Outcomes:	CO1 : L	earn about the	importanc	e of cleanliness						
	CO2 : [Develop skills in	finding an	d solving sanitation i	related p	roblem	S			
	CO3: 1	Motivating othe	rs not to li	tter						
CO4 : Motivating others r			rs not to u	se plastic bags						
CO5 : To manage and impl			mplement	campaigns and dem	ionstrate	e sanita	tion ad	vice in ne	earby villages.	
CO6 : Skill to train others										
				COURSE SYLL	ABUS					
Unit No.				Contents						Contact Hrs.
I-IV	This cours	e is applicable to	o all stude	nts to carry out vario	to carry out various activities associated with cleanliness and 10					100
	recycling o	of the waste ma	terials at d	epartmental and un	iversity l	evel in l	ine wit	th Swach	n Bharat	
	Abniyan tr	nat may include:					h Dhar			
	• 10	with NCC or NS	sor wome	ns for creating awai	reness or	i Swach	in Bhar	at in asso	clation	
	• To	nroduce energ	v and man	ure using hio-waste	c					
	• Pl	antation drives	to increase	the green cover and	d conserv	vation c	of old ti	rees.		
	• Se	elf-sustainable u	nits throug	th energy production	n using so	olar par	nels.			
	• Pl	astic free enviro	nment.		Ū	•				
	• De	evelopment of G	ireen Builo	lings concept in the	society.					
	● Ef	fective Waste m	ianagemei	nt and recycling.						
	● Ra	ain water harves	ting.							
	● Pr	oper disposal of	chemical	waste.						
	• Cr	eating awarene	ss in the c	ommunity through s	hort film	s.				
	• Us	se of social medi	ia for broa	der community outr	each.					
	Note: Stur	dents will submi	t a hrief re	nort on the activities	s carriad	out to t	ho dor	artmont	for the	
	record nu	rnose					ine uep	Jartineilt		
	record purpose.									

A = Activity

*https://www.ugc.ac.in/pdfnews/8118809_UGC-Letter-reg-Swachcha-Bharat-Abhiyan-.pdf

INORGANIC CHEMISTRY II

Cours	e No:	Course Name:				Course C	ode: 0814	02001		
CH-07	,	Inorganic Chemist	ry-II							
Batch:		Programme:	Semester:	L	т	Р	Credit	Contact	: Hrs.	
2024								per We	ek:	04
onwar	ds	M.Sc. Chemistry	II	4	0	0	4	Total H	r s.:	60
Total E	Evaluati	on Marks: 100	Examination	Duration:		3 Hrs.				
	Pre-requisite of course: Basic understanding of electronic spectroscopy, magnetic properties and reaction mechanisms in coordination compounds.									
Course	?	To provide an unde	rstanding of	the fundar	mentals d	of electron	ic spectros	scopy of	coord	lination
Object	tives	compounds and adve chemistry and its the	anced topics so ory will be discu	uch as, rea ussed as we	ction mee II.	chanism in	complexes	. Introdu	ctory	nuclear
Course	9	After completing this	course, stude	nt is expect	ed to lear	n the follo	wing:			
Outco	mes:	CO1: Understanding	of electronic pr	roperties of	coordina	tion compo	ounds			
		CO2: Knowledge of te	erm symbols ar	nd Orgel dia	grams					
		CO3: Able to predict t	he allowed tra	insitions be	tween vai	rious molec	cular energy	/ levels		
		CO4: Understanding	of anomalous r	nagnetic be	haviour					
		CO5: Understanding (of reaction me	chanisms in	coordina	tion compo	ounds			
		COB: Understanding (of metal-ligand	equilibria i	n solutior	i în coordin	ation comp	ounas		
			CO	URSE SYLL	ABUS					
Note fo	or Exam	niners and Students	:							
1. The c	question	paper will consist of	four sections A	, B, C & D. I	Examiner	will set nin	e questions	s in all, se	lecting	g two
questio	ns from	section A, B, C, and D	of 15 marks ea	ach and ma	y contain	more than	one part. C	Question	1 will	be of 15
marks a	nd cons	ists of short answer to	/pe questions o	of 2 to 3 ma	irks each	covering th	e entire syl	labus.		
2. The c	andidat	e will be required to a	ittempt five qu	estions in a	ill i.e. sele	cting one c	uestion fro	om each s	ectior	1
includin	ig the co	ompulsory question. T	he duration of	the examin	ation will	be 3 hours	5.		<u> </u>	
Unit				Contents	i				Conta	act Hrs.
100.	FLECTE				RTIFS-I					15
-	Spectro	oscopic ground states	and the evalu	ation of en	ergies of	various J s	tates of fre	e ions.		
	Term s	ymbols, splitting of S,	P, D and F terr	ms under o	tahedral	and tetrah	edral electr	ostatic		
	potent	ial, correlation, Orgel	and Tanabe-Su	gano diagra	ams for tra	ansition me	tal complex	xes (d ¹ -		
	d ⁹ state	es), calculations of Dq,	B and β param	neters, char	ge transfe	er spectra o	of complexe	s (both		
	metal	to ligand and ligand	to metal). Sp	ectroscopio	method	of assignr	ment of ab	solute		
	configu	ration in optically act	ive metal chela	ates and the	eir stereoo	chemical in	formation.			
II	ELECTE	RONIC SPECTROSCOP	AND MAGNE	TIC PROPER	RTIES-II					15
	Brief r	eview of different ty	pes of magne	tic behavic	ors, spin-o	orbit coupl	ing, quencl	hing of		
	orbital	angular moments, te	emperature inc	dependent	paramagi	netism, and	omalous ma	agnetic		
	mome	nts. Crystal field the	eory and its	application	to expl	ain magne	tic proper	ties of		
	coordii	tion compounds. N	lagnetic intera	ictions in p	oiynuciea	r systems,	canting, sp	nu –		
	rrustra	uon.								

III	REACTION MECHANISMS OF TRANSITION METAL COMPLEXES	15
	Energy profile of a reaction, reactivity of metal complexes, inert and labile complexes, kinetic	
	application of valence bond and crystal field theories, kinetics of octahedral substitution, acid	
	hydrolysis, factors affecting acid hydrolysis, base hydrolysis, conjugate base mechanism,	
	direct and indirect evidences in favour of conjugate mechanism, anation reactions, reactions	
	without metal ligand bond cleavage. Substitution reaction in square planar complexes, trans	
	effect, mechanism of the substitution reactions. Redox reactions, mechanism of inner-outer	
	sphere type reactions, cross reactions and Marcus-Hush theory.	
IV	METAL-LIGAND EQUILIBRIA IN SOLUTION	15
	Stepwise and overall formation constants and their interaction, trends in stepwise constants,	
	factors influencing stability of metal complexes dependent on size and charge, metal class,	
	ligand preference, nature of transition metal ions, basic strength, chelate effect, ring size,	
	steric strain, macrocyclic effect, thermodynamic and kinetic stability, determination of	
	formation constants by pH-metry and spectrophotometry.	
Sugge	sted Readings:	
1.	G. L. Miessler, P. J. Fischer and D. A. Tarr, Inorganic Chemistry, 5 th Edition. <i>Pearson</i> , 2014.	
2.	B. N. Figgis and M. A. Hitchman, Ligand Field Theory and Its Applications, Wiley-India, 2010.	
3.	J. E. House, Inorganic Chemistry, Academic Press, 2008.	
4.		
5.	J. E. Huheey, E. A. Keiter, R. L. Keiter, O. K. Medhi, Inorganic Chemistry: Principles of Structure a	and Reactivity,
	4 th Edition. <i>Pearson Education</i> , 2006.	
6.	F. A. Cotton and Wilkinson, Advanced Inorganic Chemistry, 6 th Edition. John Wiley, 2006.	
7.	D. F. Shriver, P.W. Atkins and C.H. Landgord, Inorganic Chemistry, 3rd Edition. Oxford Universit	ty Press, 1998.
8.	N. N. Greenwood and E. A. Earnshaw; Chemistry of elements, 2 nd Edition. Butterworth-Heiner	nann, 1997.
9.	J. D. Lee, Concise Inorganic Chemistry, Chapman & Hall Ltd., 1991.	
1		

INORGANIC CHEMISTRY PRACTICAL-II

Cours	e No:	Course Name:				Course C	ode:0814	02001 P		
CH-10)	Inorganic Chemist	ry Practical-	II						
Batch:		Programme:	Semester:	L	Т	Р	Credit	Contact H	lrs.	
2024								per Week	: 04	
onwar	ds	M.Sc. Chemistry	П	0	0	4	2	Total Hrs.	: 60	
Total E	Evaluatio	n Marks: 50	Examinatio	n Duration:		6 Hrs.				
	Pre-requisite of course: Basic knowledge of quantitative estimation and radical analysis gained during undergraduate courses.									
Course	2	To impart knowledg	ge of volumet	ric-redox and	l complex	ometric est	imations a	nd analysis	of mixture	
Object	tives	of radicals, both ac	dic and basic						-	
Course	9	After completing th	is course, stu	dent is expe	cted to le	arn the follo	owing:			
Outcol	mes:	CO1: Detailed unde	rstanding of (quantitative	estimatio	ns				
		CO2: Knowledge of	volumetric-re		15					
		CO3: Milowieuge of			5 Ivcic					
		CO4. Auvanceu knu	dic and basic	radicals from	iysis n mixtura	of radicals				
		CO6: Analysis of int	erfering radio	als present i	n a mixtu	re of ions				
			<u> </u>	OURSE SYLI	ABUS					
NOTE			•							
NOTE:	uastians	will be set one from	aach of tha l		didatas a	ro roquirod	to ottomo	t all tha au	octions	
Two qu	uestions	will be set, one from	each of the c	JNIT. THE Car	uluales a	ire required	to attemp	t an the que	stions.	
Unit				Contents				C	ontact Hrs.	
No.										
I	QUAN	TITATIVE ESTIMATIO	N						30	
	Quanti	tative estimation (inv	olving volum	etric-redox a	nd compl	exometry) o	of constitue	ents in		
	two an	d three component n	nixtures.							
II	SEMIM	ICRO QUALITATIVE	ANALYSIS						30	
	Comple	ete systematic analys	is of Inorgan	ic mixtures c	ontaining	g six ions ind	cluding the	2		
	interfe	ring radicals.								
Suggest	ted Readi	ngs:								
1.	J. Basse 5 th Editi	ett, R. C. Denney, G. on. <i>ELBS</i> , 1989.	H. Jeffery and	d J. Mendhar	n, Vogel's	s Textbook	of Quantita	ative Analys	is, revised,	
2.	G. Svel	nla, Vogel's Textboo	k of Macro a	nd Semimic	ro Qualita	ative Inorga	anic Analys	sis, revised,	5 th Edition.	
	Longm	an, 1979.								
3.	Marr a	nd Rocket, Practical I	norganic Chei	mistry. <i>Van I</i>	lostrand	Reinhold, 19	972.			

ORGANIC CHEMISTRY-II

Course	e No:	Course Name:					Course Code: 081402002				
CH-08		Organic Chemistry	/-								
Batch:		Programme:	Semester:	L	Т	Р	Credits	Contac	t Hrs.		
2024								per We	eek:	04	
onward	ds	M.Sc. Chemistry	II	4	0	0	4	Total H	lrs.:	60	
Total E	valuatio	on Marks: 100	Examinatio	n Duration:		3 Hrs.					
			Pre-requisit various alke free radicals of conjugati	e of course: nes and carb ;; fundament on and mole	Basic kno onyl com als of inte cular orbi	wledge abc pounds; for raction of li tal diagram	out the stru mation, st ght with m s.	acture an ability an atter; ba	id react id react sic knov	ions of ions of wledge	
Course		To provide advanc	e knowledge	of organic	chemistry	reactions	such as a	ddition r	eaction	s, free	
Objecti	ive	radical, photochem solving the probler pericyclic reactions.	istry and perions related to	cyclic reactio addition re	ns. At the eactions, _	end of this free radica	course, stu I reactions	dents wi , photoc	ll be tra hemistr	ined in ry and	
Course		After completing th	is course, stu	dent is expe	cted to lea	arn the follo	wing:				
Outcon	nes:	CO1 : In-depth unde	erstanding of	electrophilic	addition	reaction of	alkenes, al	kynes an	d allene	es	
		CO2: Thorough kno	owledge of th	ne addition,	substituti	on and con	densation	reaction	is of ca	rbonyl	
		compounds	owledge of formation, stability and reactions of free redicals								
		CO3: Advanced kno	wiedge of various photochemical reactions in organic chemictry								
		CO5: Ability to un	derstand exr	plain and pre-	enicarie edict vari	nus asnerts	s of pericy	rlic reac	tions si	ich as	
		electrocyclic reaction	ons and cyclo	additions.		bus aspects	s or pericy		10113 30		
		CO6 : Theoretical tr	eatments and	application	s of sigma	tropic rear	rangement	s and che	elotropi	ic	
		reactions									
			CO	URSE SYL	LABUS						
Note fo	r Exam	iners and Students	:								
1. The q	uestion	paper will consist of	four sections	A, B, C & D.	Examiner	will set nine	e questions	s in all, se	electing	two	
question	ns from s	section A, B, C, and D	of 8 marks e	ach and may	contain r	nore than o	ne part. Q	uestion 1	will be	of 8	
marks ar	nd consi	sts of short answer t	ype questions	s of 2 to 3 ma	arks each	covering th	e entire sy	llabus.			
2. The ca	andidate	e will be required to a	attempt five o	uestions in a	all i.e. sele	cting one q	uestion fro	om each s	section		
including	g the co	mpulsory question. T	he duration o	of the examir	nation wil	be 2 hours					
Unit No.				Contents					Conta	ct Hrs.	
	imine	and enamine forma	tion, Grignar	d, organozir	ic and or	ganolithium	n reagents	, Aldol,			
	Knoev	enagel, Claisen, Man	nich, Benzoii	n, Perkin and	d Stobbe	reactions,	Addition o	f ylides			
	(Wittig	, Julia and Peterson	reactions), h	ydride reduc	tions of v	arious carb	onyl comp	ounds.			
	Hydrol	Hydrolysis of acetals, esters, amides and nitriles.									

I	ADDITION REACTIONS OF CARBON-CARBON AND CARBON-HETEROATOM MULTIPLE	15
	BUNDS	
	a) Polar addition to Carbon-Carbon Multiple Bonds:	
	Mechanistic and stereochemical aspects of following electrophilic addition reactions:	
	hydrohalogenation, hydration, epoxidation, Woodward and Prevost dihydroxylations,	
	halogenation, halocyclizations, oxymercuration, hydrogenation, hydroboration and carbene	
	cyclopropanation. General aspects of addition reactions of alkynes and allenes. Addition of	
	nucleophiles to alkenes, Michael reaction, nucleophilic epoxidation and cyclopropanation.	
	b) Addition to Carbon-Heteroatom Multiple Bonds:	
	Reactivity of various carbonyl compounds, Mechanistic and stereochemical aspects of	
	following nucleophilic addition reactions to carbonyl compounds: hydration, acetalization,	
П	FREE RADICAL REACTIONS AND ORGANIC PHOTOCHEMISTRY	15
	a) Free radicals: Generation of free radicals, structure and stability, persistent radicals,	
	common initiators and uses (peroxides, UV light, AIBN-tin hydride), radical anions and	
	cations (One electron redox reactions), radical chain reactions, radical scavengers, Types of	
	free radical reactions: substitution (halogenation, Sandmeyer reaction), addition (to	
	unsaturated systems, radical cyclization), fragmentation (Hunsdiecker reaction),	
	intramolecular H-abstraction (Hofmann-Loeffler and Barton reactions), oxidation (auto-	
	oxidation of aldehydes) and dimerization (Pinacol, McMurry, acyloin and Glaser reactions)	
	b) Organic Photochemistry: Fundamentals of organic photochemistry, Photochemical	
	reactions of alkenes: photo-cycloaddition, Paterno-Buchi reaction, di-pi-methane	
	rearrangement) Photochemical reactions of carbonyl compounds: Norrish type I and II	
	reactions, di-pi methane and oxa-di-pi methane rearrangements. Basics of visible light	
	photocatalysis.	
III	PERICYCLIC REACTIONS I- ELECTROCYCLIC AND CYCLOADDITION REACTIONS	15
	Molecular orbital symmetry, Frontier orbitals of ethylene, 1,3-butadiene, 1,3,5-hexatriene,	
	allyl and pentadienyl systems. Classification of pericyclic reactions. FMO approach.	
	Electrocyclic reactions: conrotatory and disrotatory modes and effect on stereochemistry,	
	4n, 4n+2, allyl and pentadienyl systems, Nazarov cyclization. Cycloaddition reactions:	
	antarafacial and suprafacial additions, 4n and 4n+2 systems, 2+2 addition of ketenes,	
	Detailed treatment of Diels-Alder reactions (types of Diels-Alder reactions, common dienes	
	and dienophiles, endo/exo selectivity, catalysis, synthetic applications, intramolecular and	
	hetero Diels-Alder reactions), 1,3-dipolar cycloadditions : structure, methods of preparation	
	andsynthetic applications of nitrones, nitrile oxides and azides.	
IV	PERICYCLIC REACTIONS II- SIGMATROPIC, ENE AND CHELOTROPIC REACTIONS	15
	Sigmatropic rearrangements: General considerations, suprafacial and antarafacial shifts of	
	H and alkyl groups, 1,3, 1,5, 3,3 and 2,3-sigmatropic rearrangements. Valence tautomerism	
	(divinylcyclopropane and bullvalene), Detailed treatment of Claisen (Eschenmoser, Johnson,	
	Ireland and aromatic variants), Cope (oxy-Cope and anionic oxy-Cope) rearrangements.	
	Wittig, aza-Wittig and Sommelet-Hauser rearrangements, concerted syn-eliminations. Ene	
	reactions: General features, carbonyl and oxy-ene reactions, intramolecular ene reactions.	
	Chelotropic eliminations: Definition, examples involving nitrogen, sulfur dioxide and carbon	
	monoxide extrusions.	

Suggested Readings:

- S. Kumar, V. Kumar and S. P. Singh, Pericyclic Reactions, A Mechanistic and Problem-Solving Approach, Ist Edition. *Elsevier*, 2015.
- 2. S. M. Mukherji and S. P. Singh, Reaction Mechanism in Organic Chemistry, Revised Edition. (Revised by S. P. Singh and Om Prakash). *TRINITY Press*, An Imprint of Laxmi Publications Pvt. Ltd., 2015.
- 3. Michael B. Smith, March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 7th Edition. *Wiley*, 2013.
- 4. J. Clayden, N. Geeves and S. Warren, Organic Chemistry, Oxford University Press, 2012.
- 5. Morrison, Boyd and Bhattacharjee, Organic Chemistry, 7thEdition. *Pearson*, 2010.
- 6. F. A. Carey and R. J. Sundburg, Advanced Organic Chemistry PART A and PART B, Springer 2007.
- 7. S. Sankararaman, Pericyclic reactions-A Textbook, 1st Edition. *Wiley-VCH, Weinheim*, 2005.
- 8. R. Bruckner, Advanced Organic Chemistry: Reaction Mechanism, Harcourt (India) Pvt. Ltd., 2001.
- 9. P. Sykes, A Guidebook to Mechanism in Organic Chemistry, Longman, 1985.

ORGANIC CHEMISTRY PRACTICAL – II

Course No	: Course Name:				Course Code: 081402002 P				
CH-11	Organic Chemistry	y Practical-II	Practical-II						
Batch:	Programme:	Semester:	L	Т	Р	Credit	Contact	t Hrs.	
2024							per We	ek:	04
onwards	M.Sc. Chemistry	II	0	0	4	2	Total H	ours:	60
Total Evalu	ation Marks: 50	Examinatio	n Duration:	6 Hrs.					
		Pre-requisit	e of cours	e: Skills t	o handle s	olvent ext	tractions,	distilla	ations,
		crystallizatio	ons simple o	hromatog	raphic expe	riments ind	depender	ntly. Ab	ility to
		set up read	tion assem	blies whic	h may requ	uire heatin	g/cooling	g, set-u	p and
		execute filtr	ration and d	rying proce	esses.				
Course	To acquire the skills	to plan and o	carry out se	paration of	mixtures of	f organic co	ompound	s by me	ans of
Objective	solvent-solvent ext	traction, furt	her purifica	ition and	identificatio	on of isolo	ited com	iponent	s and
	derivative preparat	ion. To learn	how to pla	n a synthe	tic operatio	n from sim	ple starti	ng mat	erials,
	set-up the reaction	assembly, wo	ork-up, Isola	te ana puri	jy the proa	uct. Develo	р кпоміе	age of p	broper
	unu suje wuste uisp	iosui ili tilese	operations.						
Course	After completing th	nis course, stu	ident is expe	ected to lea	arn the follo	wing:			
Outcomes:	CO1: To analyze a	nd separate	binary mixt	ures of so	lids using s	olvent ext	raction, t	o purif	y and
	identify the isolated	d component	s via derivat	ive prepar	ation				
	CO2: To analyze an	d separate bi	nary mixtur	es of solid	and liquid u	ising solvei	nt extract	ion, to	purify
	and identify the iso	lated compor	nents via de	rivative pro	eparation				
	CO3: To analyze ar	nd separate I	pinary mixtu	ures of liqu	uids using s	olvent ext	raction, t	o purit	y and
	identify the isolated	d component	s via derivat	ive prepar	ation	nounde			
		isolate and n	urify deter	mine the i	nganic com	pounus o proparor	t compoi	ind and	d safa
	treatment and disp	osal of chemi	of chemical waste						
	CO6: To develop an	exposure to industrial chemical operations via a visit							
	·	CC	URSE SY	LLABUS					
NOTE:									
Two question	ons will be set, one from	each of the l	JNIT. The ca	ndidates a	re required	to attemp	t all the q	luestior	าร.
Unit No.			Contents					Contac	t Hrs.
I	QUALITATIVE ANALYSI	S OF BINARY		MIXTURES	BY A SYSTE	MATIC		30)
	APPROACH		~						
	Chemical separation us	Ing H ₂ O, NaH	CO3, NaOH,	HCI, Ether	or any othe	er reagent a	as per		
	Systematic identification	solia-solia, so	na-nquia an	a iiquia-iiq I proparati	uid mixture	!S st ana dariu	(ativo		
	of each		ponents and	i preparati	on of at leas	st one deriv	alive		
	In order to get an evon	sure on how	chemical in	hustrios fui	nction dens	artment wi	11		
	arrange an industrial vie	cit			ietion, uepo		"		
	Students to propare a r	anort on the	industrial vi	cit					
	Students to prepare a r	eport on the	industrial VI	SIL.					

II	A. ORGANIC SYNTHESIS	30				
	Preparation of organic compound involving one-step reaction. (Prepare at least three compounds)					
	[Important <i>Note:</i> Greener protocols to be used wherever possible. Submit the recrystallised sample of the synthesized compound after checking its purity by TLC and					
	melting points.]					
	B. INDUSTRIAL VISIT					
Sugges	ted Readings:					
1.	K. L. Williamson and K. M., Masters Macroscale and Microscale Organic Experiments, 7th Ed	ition. Cengage				
	learning, 2017.					
2.	H.A. Shally, Green Chemistry Laboratory Manual for General Chemistry, 1st Edition CRC Press,	, 2015.				
3.	R. K. Bansal, Laboratory Manual in Organic Chemistry, Wiley, 2006.					
4.	3. S. Furniss and others, Vogel's Text Book of Practical Organic Chemistry, 5 th Edition Paperback, <i>Pearson</i> , 2003.					
5.	D. Pasto, C. Johnson and M. Miller, Experiments and Techniques in Organic Chemistry,	Prentice Hall,				
	Instructor's Edition, 1992.					
6.	H. T. Clarke revised by B. Haynee, A Hand book of Organic Analysis-Qualitative and Quanti	tative, Edward				
	Arnold, London, 1975.					
7.	H. Middleton, Systematic Qualitative Organic Analysis, Edward Arnold, London, 1959.					

PHYSICAL CHEMISTRY-II

Course No:	Course Name:				Course Code: 081402003			
CH-09	Physical Chemistr	y-II (Quantum	<mark>ո Ch</mark> emi	stry &				
	Group Theory)							
Batch:	Programme:	Semester:	L	т	Р	Credit	Contact Hrs.	
2024 onwards							per Week:	04
	M.Sc. Chemistry	II	4	0	0	4	Total Hrs.:	60
Total Evaluation Marks: 100		Examination Duration: 3 Hrs.						
	Pre-requisite of course: Knowledge of basic physical chemistry up to UG level.							
Course Objectives	To provide students	with an under	rstanding	g of phys	ical cher	nistry like	quantum appro	ach, enzyme kinetics,
	unimolecular react	ons, principles	s of symi	netry ar	nd group	theory an	d non-equilibriu	um thermodynamics.
	This course will str	engthen the e	ssentials	of Phys	ical Chei	mistry, esp	pecially group t	heory and quantum
	chemistry.							
Course Outcomes:	After completing th	is course, stud	lent is ex	pected	to learn t	the followi	ing:	
	CO1: Basic understa	anding of phys	ical cher	nistry.				
	CO2: Use of symme	try and enzym	e kinetio	s in dail	y life.			
	CO3: Skills for analy	zing and deve	loping ne	ew susta	inable m	nethods.		
	CO4: Skills for deve	loping industri	ally impo	ortant m	ethods.			
	CO5: Development	of alternate ar	nd new t	heoretic	al metho	ods.		
	CO6: Use of advance	ed and recent	technol	ogies in I	Physical	Chemistry		

COURSE SYLLABUS

Note for Examiners and Students:

1. The question paper will consist of four sections A, B, C & D. Examiner will set nine questions in all, selecting two questions from section A, B, C, and D of 15 marks each and may contain more than one part. Question 1 will be of 15 marks and consists of short answer type questions of 2 to 3 marks each covering the entire syllabus.

i) 2. The candidate will be required to attempt five questions in all i.e. selecting one question from each section including the compulsory question. The duration of the examination will be 3 hours.

Unit No.	Contents	Contact Hrs.
I	QUANTUM APPROACH AND APPROXIMATION METHODS	15
	Harmonic oscillator: Application to diatomic molecules and Energy levels. Properties of Legendre	
	polynomials, Rodrigues formula, Recursion formulae, Associated Legendre polynomials, Laguerre and associated Laguerre polynomials.	
	Rigid rotator: Model for a rotating diatomic molecule and Energy level. Solution of spherical eigen-	
	functions, Recursion formulae, Derivation of Legendre polynomial equation.	
	<i>The Hydrogen atom</i> : Schrödinger equation for hydrogen atom. Solution of radial wave function. Radial distribution curves and shapes of atomic orbitals.	
	Approximate Methods: The linear variation principle, First order time-independent Perturbation theory for non-degenerate states. Variation theorem and variation methods. Use of these methods illustrated with some examples like particle in a box with finite barrier, anharmonic oscillator, approximation functions for particle in a box and hydrogen atom.	

	ENZYME KINETICS AND THEORY OF UNIMOLECULAR REACTIONS	15				
II	Enzyme Kinetics: Kinetics of (one intermediate) enzymatic reaction: Michaelis-Menton treatment,					
	Evaluation of Michaelis's constant for enzyme-substrate binding by line weaver-Burk plot by Dixon and by					
	Eadie-Hofstee methods. Competitive and non-competitive inhibition.					
	Unimolecular reactions: Dynamics of unimolecular reactions (Lindemann-Hinshelwood and Rice-					
	Ramsperger-Kassel-Marcus [RRKM] theories of unimolecular reactions.					
	PRINCIPLES OF SYMMETRY AND GROUP THEORY	15				
	Symmetry elements and Symmetry operations; Definitions of groups, subgroups, and classes; Symmetry					
	elements in Allene, H ₂ O ₂ , Benzene and Ferrocene; Determination of point groups of small molecules and					
	Schönfliesand Hermann-Mauguin Notations; The Great Orthogonality theorem. Character table for point					
11/		15				
IV	Constal theory of non equilibrium processes. Entropy production and entropy flow: Thermodynamic	15				
	General theory of non-equilibrium processes, Entropy production and entropy now, mermodynamic					
	criteria for non-equilibrium states, Entropy production in heat flow, Mass flow, Electric current, Chemical					
	reactions, Saxen's relation, Onsager's reciprocity relation, Thermomolecular pressure difference, Electro					
	kinetic phenomenon, Coupled reactions.					
Sugges	ted Readings:					
1.	F. A. Cotton, Chemical Application of Group Theory, 3 rd Edition. <i>John Willey & Sons</i> , 2018.					
2.	H. K. Moudgil, Textbook of Physical Chemistry, PHI Publication House, New Delhi, 2015.					
3.	P. Atkins and J. Paula, Atkins' Physical Chemistry, 10 th Edition. Oxford University Press, 2014.					
4.	I. N. Levine, Quantum Chemistry, 7 th Edition. <i>Pearson Education</i> , 2013.					
5.	C. Kalidas and M. V. Sangaranarayanan, Non-Equilibrium Thermodynamics: Principles & Applications, Macmin	llan India Ltd.,				
	2012.					
6.	R. K. Prasad, Quantum Chemistry, New Age International, 2011.					
7.	A. K. Chandra, Introductory Quantum Chemistry, Tata McGraw-Hill, 2008.					
8.	8. K. J. Laidler, Chemical Kinetics, 3 rd Edition. <i>Pearson Education</i> , 2007.					
9. A P	. Katchalsky and P. F. Curren, Non-Equilibrium Thermodynamics in Biophysics <i>, Harvard University</i> <i>ress,</i> Cambridge, 1995.					

10. G. Davidson, Group theory for Chemist, *Macmillan Physical Science*, 1991.

PHYSICAL CHEMISTRY PRACTICAL-II

Course	Course Name:				Course Code: 081402003 P						
No:	Physical Chemistry Pr	actical-II									
CH-12											
Batch:	Programme:	Semester:	L	Т	T P Credit Contact						
2024				Hrs.per							
onwards	M.Sc. Chemistry	II	Week:								
			0	0	4	2	Total Hrs.:	60			
Total Evaluat	i on Marks: 50	Examination Du	rati	on:		6 Hrs.					
		Pre-requisite of practical laborat	coι cory	irse and	: Kn bas	owledge of solution preparation, safety ic practical knowledge up to UG level.	measure in ch	emistry			
Course	To provide students ex	xposure of refract	tom	etry	, ch	emical kinetics, solution chemistry, tur	bidity metry,	and pH,			
Objectives	potentio and conduct	tometry experime	ents	. A	dva	nced experiments such as pH metry	y, potentiome	try and			
	conductometry will be a	arried out. First-h	and	ехр	erie	nce of turbidity meter studies will be prov	vided. At the en	d of this			
	course students will be										
6	equipped to carry out in	istrumental analy.	sis a	t th	e re.	search level.					
Course	After completing this co	ourse, student is e	xpe		to	earn the following:					
Outcomes:	CO1 : Basic understand	ng of practical phy	/SICc	ii Ch Ictiv	enn itv r	stry. notor in daily life					
	CO2 : Use of pH meter, CO3 : Skills for analy	zing and develo	nino	τ n		sustainable					
	methods		ping	5 11		Sustainable					
	CO4 : Skills for deve	loping industriall	vi	mpc	ortai	nt practical					
	methods.		,								
	CO5: Development of a	Iternate analytica	l me	tho	ds.						
	CO6: Use of advanced a	and recent technic	lues	in e	expe	rimental chemistry.					
				CC	UR	SE					
				SYL	LAE	BUS					
NOTE: Depending o	n availability of time and	instruments in lat	oora	tory	, fe	w experiments may be added/deleted.					
Unit No.		Con	nten	ts			Contact	Hrs.			
	 To determine the sulphate, K₂Cr₂/ 	he concentration $\overline{O_7}$ and KMnO ₄ by a	of a a pH	redi me	ucta tric	nt or an oxidant i.e. Ferrous ammonium titration method.					

I	CHEMICAL KINETICS AND pH METRY EXPERIMENTS	3
	Chemical Kinetics	0
	• Determination of the effect of (a) change in temperature, (b) change in concentration	
	of reactants and catalysts (c) ionic strength of the media on velocity constant of	
	hydrolysis of an ester.	
	 Determine the velocity constant of hydrolysis of ethyl acetate catalyzed by an acid 	
	and NaOH solution.	
	Solution Chemistry	
	• To determine the solubility of an inorganic salt like KCl, NaCl, KNO ₃ , NaNO ₃ , K ₂ SO ₄ in	
	water at different temperature and hence to obtain the solubility curve.	
	• To determine the heat of solution of given substance like oxalic acid and benzoic acid	
	by solubility method.	
	pH metric	
	• To determine the strength of strong acid versus strong base, weak acid versus strong	
	base, mixture of strong and weak acids versus strong base, weak acid versus weak	
	base, strong acid versus weak base using a pH meter.	
II	POTENTIOMETRY AND CONDUCTOMETRY EXPERIMENTS	3
	Potentiometry	0
	• To determine the strength of strong acid versus strong base, weak acid versus strong	
	base, mixture of strong and weak acids versus strong base, weak acid versus weak	
	base, strong acid versus weak base using a potentiometer.	
	 To prepare and test the standard reference electrode i.e., calomel electrode 	
	orsilver- silver chloride electrode.	
	 Titrate Mohr's salt against KMnO₄potentiometrically and carry out the titration 	
	inreverse order.	
	Turbidimetry	
	 To find the turbidity of given solution by using Nephthalo turbidity meter. 	
	Conductometry	
	 Study of conductometric titration of NH₄Cl versus NaOH solution, CH₃COONa 	
	versusHCl, MgSO ₄ versus $Ba(OH)_2$, $BaCl_2$ and K_2SO_4 and comment on the nature of	
	graph.	
	• To study stepwise neutralization of polybasic acid like oxalic acid, citric acid,	
	phosphoric acid by conductometric titration and explain the variation in the graph.	

Suggested Readings:

- 1. B. Viswanathan and P. S. Raghavan, Practical Physical Chemistry, *M V Learning*, 2017.
- 2. Shoemaker and Garland, Experiments in Physical Chemistry, *McGraw Hill*, 2015.
- 3. B. D. Khosla, V. C. Garg and Adarsh Gulati, Senior Practical Physical Chemistry, R. Chand & Co., New Delhi, 2014.
- 4. S. K. Maity and N. K. Ghosh, Physical Chemistry Practical, New Central book Agency, 2012.
- 5. G. P. Mathews, Experimental Physical Chemistry, 1stEdition. *Oxford University Press*, 1995.
- 6. A. M. James and F. E. Prichard, Practical Physical Chemistry, *Lomgman*, 1994.
- 7. B. P. Levitt, Findley's Practical Physical Chemistry, 9thEdition. *Longman Group Ltd.*, 1993.
- 8. J. B. Yadav, Advanced Practical Physical Chemistry, Goel Publishing House, 1991.
- 9. R. C. Das and B. Behara, Experimental Physical Chemistry, Tata McGraw Hill, 1984.

DCSC- COMPUTATIONAL CHEMISTRY

Course No.: Course Name:				Course Code: 081402004					
Batch: 2024	Programme:	Semester:	L	Т	Р	Credit	Contact Hrs. per Week:	02	
onwards	M.Sc. Chemistry	П	2	0	0	2	Total Hrs.:	30	
Total Evaluation Marks: 50		Examination Durat	ion:	2	Hrs.				
		Pre-requisite of co understanding of a	urse: To b-initio m	provide t nethods,	the basic DFT, bas	knowledge is sets and	e of computation potential energ	nal Chemistry. Basi y map.	ic
Course Objectives	To provide the basic known application towards under	owledge of various perstanding the stability	paramete ity of mol	ers and s lecules ai	software nd propo	involved in sing its rea	n computationa ction mechanisn	l Chemistry and its n.	:s
Course Outcomes:	After completing this course, student is expected to learn the following: CO1: Basic understanding of computational chemistry CO2: Scope of computational chemistry CO3: Computational methods CO4: Use of computational software and of polyatomic molecules CO5: Skills for analyzing stability of molecules and visualization of transition states CO6: Skills for proposing new molecules								

COURSE SYLLABUS

Note for Examiners and Students:

1. The question paper will consist of four sections A, B, C & D. Examiner will set nine questions in all, selecting two questions from section A, B, C, and D of 8 marks each and may contain more than one part. Question 1 will be of 8 marks and consists of short answer type questions of 2 to 3 marks each covering the entire syllabus.

2. The candidate will be required to attempt five questions in all i.e. selecting one question from each section including the compulsory question. The duration of the examination will be 2 hours.

Unit No.	Contents	Contact Hrs.
I	INTRODUCTION TO COMPUTATIONAL CHEMISTRY	7
	Scope of computational chemistry, Born-Oppenheimer approximation, Hartree-Fock theory,	
	restricted HF calculations; open shell systems, ROHF and UHF calculations, HF limit and electron	
	correlation, semi empirical methods.	
н	DENSITY FUNCTIONAL THEORY	8
	Electron density, exchange-correlation functional, local Density approximation, generalized gradient approximation, hybrid density functional methods, self-Interaction corrections.	
111	BASIS SETS	7
	Definition of basis sets, Slater and Gaussian type orbitals, minimal, double-zeta, split-valence, core- valence, Pople style basis Sets, polarization and diffuse functions, determination of basis functions, pseudopotentials or effective core potentials, choice of basis bets.	

IV	BASIC CONCEPTS OF POTENTIAL ENERGY SURFACES	8						
	Z-matrix construction, Stationary Points, geometry optimization, local and global minima, and							
	transition state theory.							
	Computations of single point energy, optimizations and transition states of polyatomic molecules,							
	intrinsic reaction coordinate analysis.							
Suggested Readings:								
1. J. B. Foresman and A. Frisch, Exploring Chemistry with Electronic Structure Methods, 2 nd Edition. <i>Gaussian Inc.</i> , 2015.								
2. F.Je	2. F. Jensen, Introduction to Computational Chemistry, John Wiley & Sons, 2007							

- 3. C. J. Cramer, Essentials of Computational Chemistry: Theories and Models, 2ndEdition. *John Wiley & Sons Ltd*, 2004.
- 4. C. J. Cramer, Essentials of Computational Chemistry: Theories and Models, 2ndEdition. John Wiley & Sons Ltd, 2002.
- 5. D. A. McQuarrie, Physical Chemistry: A molecular Approach, 1stEdition. *University Science Books*, 1997.

DCSC- ANALYTICAL TECHNIQUES IN CHEMISTRY

Course	Course Name:					Course Code:081402005					
No:	Analytical Techniques in Chemistry										
CH-52											
Batch:	Programme:	Semester:	L	т	Р	Credit	Contact Hrs.				
2024							per Week:	02			
onwards	M.Sc. Chemistry	II	2	0	0	2	Total Hrs.:	30			
Total Evalua	tion Marks: 50	Examination Duration: 2 Hrs.									
		Pre-requisite of course: Knowledge of solution preparation, safety measure in chemistry practical laboratory and basic practical knowledge up to UG level.									
Course	To provide students with a basic understanding of analytical chemistry, classical and modern analytical tech										
Objectives	course will strengthen the fundamentals of analytical chemistry, especially thermogravimetric, imaging and impedance spectroscopy techniques.										
Course	After completing this course, student is expected to learn the following:										
Outcomes:	CO1: Basic understanding of analytical chemistry.										
	CO2 : Use of thermogravimetric, imaging and polarization techniques in daily life.										
	COA : Skills for developing and developing new sustainable methods.										
	CO4 : Skills for developing industrially important analytical methods.										
	CO6 : Use of advanced and recent techniques in analytical chemistry.										
Note for Examiners and Students:											
1. The question paper will consist of four sections A, B, C & D. Examiner will set nine questions in all, selecting two questions in a section of the sectio								uestions fro	om		
section A, B, C, and D of 8 marks each and may contain more than one part. Question 1 will be of 8 marks and consists of short											
answer type questions of 2 to 5 marks each covering the entite syllabus.											
2. The candidate will be required to attempt five questions in an i.e. selecting one question from each section including the computerion question. The duration of the examination will be 2 hours											
Unit No.			Con	tents				Cont	tact		
								Hr	s.		
I	THERMOGRAVIMETRIC ANALYSIS (TGA/DTA/DSC) 8										
	Principle, instrumentation of TGA, DTA, and DSC. Effect of heat on Materials, Chemical decomposition										
	and T. G. Curves, Analysis of T.G. curve to show nature decomposition reactions, the product and										
	qualities of compounds expelled, T.G. in controlled atmosphere, applications.										
II	ELECTROCHEMICAL ANALYSIS								,		
	Analysis of Metal, Alloys, Soil and Fertilizers by using electrochemical techniques like cyclic voltammetry,							γ,			
	chronoamperometry, Pulse	voltammetry.	Theory,	principle	e, workin	ig and a	oplication of cyc	lic			
	voltammetry, chronoamperor	metry, Pulse v	voltammet	ry. Use	of chemic	al and bio	osensors in				
	environmental pollutant detection.										

111	IMAGING TECHNIQUES	8
	An introduction to microscopy, the transmission and scanning electron microscope, electron optics, TEM	
	specimen preparation and imaging system, dynamics of scattering, operating principle of SEM,	
	penetration of electron in solids, SEM operating conditions and specimen preparation, electron beam	
	lithography.	
IV	ELECTROCHEMICAL POLARIZATION AND IMPEDANCE SPECTROSCOPY	7
	Anodic and cathodic polarization. Tafel plots, anodic and cathodic Tafel slopes. Corrosion rate from	
	corrosion current density. Onen circuit notential Impedance spectroscopy. Nyquesi plots. Bode plots	
	conosion current density, open circuit potential, impedance spectroscopy, nyquesi piots, bode piots.	
Sugges	ted Readings:	
1.	S. L. Chopra and J. S. Kanwar, Analytical Agriculture Chemistry, Kalyani publishers, 2008.	
2.	S. M. Khopkar, Concepts in Analytical Chemistry, 2 nd Edition. New Age International Pub.2004.	
3.	H. H. Willard, L. L. Merritt, J. A. Dean and F. A. Settle, Instrumental methods of analysis, 7th Edition. United Stat	es, 1988.
4.	D. A. Skoog and D. M. West, Principles of instrumental analysis, 2 nd Edition. Saunders College, Philadelphia, 198	80.
5.	F. D. Snell and F. M. Biffen, Commercial Methods of Analysis, Tata McGraw Hill Book Company, New York, 1944	4.

L

GE- MEDICINAL CHEMISTRY

Course	Course Name:					Course Code: 081402006				
No:	Medicinal Chemistry									
CH-60						r	1			
Batch: 2024	Programme:	Semester:	L	Т	Р	Credit	Contact Hrs. per Week:	04		
onwards	P.G. (Generic Elective Course)	Ш	4	0	0	4	Total Hrs.:	60		
Total Evalua	tion Marks:100	Examination Duration: 3Hrs.								
	Pre-requisite of course: To provide basics of medicinal chemistry									
Course	This course will provide a basic understanding and fundamentals of Medicinal Chemistry, drug-target actions, process									
Objective	of development of new drugs and regulatory processes of drug approval, intellectual property and drug abuse and misuse.									
Course	After completing this course, student is expected to learn the following.									
Outcomes:	CO1: General overview about drugs and their function									
	CO2: Idea of the various steps in drug discovery and development									
	COA: Pasic understanding of chemical principles involved in pharmacodynamics									
	CO5 : Classification and uses of various drugs									
	CO6 : A broad idea of drug manufacture, administration and drug abuse									
		COURSE	E SYLLA	ABUS						
Note for Exa	miners and Students:									
1. The question	on paper will consist of four section	ns A, B, C & D. Ex	aminer v	will set n	ine ques	tions in all	, selecting two o	questions from		
section A, B, (C, and D of 15 marks each and may	contain more th	an one p	oart. Qu	estion 1	will be of 1	5 marks and co	nsists of short		
answer type (questions of 2 to 3 marks each cov	ering the entire s	yllabus.	cting on	o quostic	n from on	sh costion inclu	ding the		
compulsory a	uestion. The duration of the exam	ination will be 3 l	hours.		e questic	n nom eau				
Unit No.		Conte	ents					Contact Hrs.		
1	FUNDAMENTALS							15		
	Historical development of systems of medicine, Basic chemical and biochemical principles, Key definitions, drug, target, receptors, enzymes, common drugs and their classification, anti- inflammatory drugs, antihistamines, antacids, antibiotics, narcotics, antivirals, and antineoplastics.									
II	DRUG ACTION 15							15		
	Chemistry of drug-target interactions, bioavailability, drug absorption, distribution, metabolism, excretion (ADME), pharmacokinetics and pharmacodynamics, toxicity, side effects, lipophilicity and hydrophilicity, blood-brain barrier and its significance, routes of drug administration									

111	DRUG DESIGN AND SYNTHESIS Development of new drugs, concept of lead compounds and lead modifications, structure-activity relationship (SAR), isosterism, bio-isosterism, important chemical principles behind design of drugs natural products and their uses, chemical synthesis of drugs, drug formulation, drug delivery						
	photodynamic therapy.						
IV	DRUGS AND SOCIETY	15					
	Regulatory processes for drug approval, regulatory agencies, intellectual property, patents, drug						
	misuse, drug abuse, abuse of antibiotics, fraud practices in treatment, historically important drugs						
	and vaccines.						
Sugges	ted Readings:						
1.	1. R. B. Silverman, The Organic Chemistry of Drug Design and Drug Action, 3 rd Edition. Academic Press, 2014.						
2.	G. L. Patrick, An Introduction to Medicinal Chemistry, 5 th Edition. Oxford University Press, 2013.						
3.	D. Sriram and P. Yogeshwari, Medicinal Chemistry, 2 nd Edition. <i>Pearson</i> , 2012.						
4.	Ed. Robert F. Dorge, Wilson and Gisvold'sTextBook of Organic Medicinal and Pharmaceutical Chemistry, 12 th Edition, 2010.						
5.	Ed. M. E. Wolff, Burger's Medicinal Chemistry and Drug Discovery, Vol. 1, 7 th Edition. John Wiley, 2010.						
6.	S. S. Pandeya and J. R. Dmmock, An Introduction to Drug Design, 1 st Edition. <i>New Age International</i> , 1999.						

SWACH BHARAT INTERNSHIP PROGRAMME

Course No:			Course Name:					Course Code:				
СН-56		Activitie	ies at Department and Universit		ersity Le	evel*						
Batch: Programme:		Programme:		Semester:	L	т	Α	Credit	Contact Hrs.			
2024 onwards								per Week: 7				
		M.Sc. Chemist	ry	I to IV	0	0	7	2	Total Hrs.: 1	00		
Total Evaluation	n Marks	: Evaluation will	be done	Examination Durat	tion:	ſ	NA					
at departmenta	al level b	y giving the rem	arks as									
Excellent/Good/Satisfactory/Poor				Pre-requisite of course: None								
Course	The m	ain objective of	this course	is to make the stud	ents awa	re abou	it the ii	nportanc	e of cleanlines	s for social		
Objectives	develo	opment.										
Course	After	completing this	course, stu	ident is expected to	learn the	follow	ing:					
Outcomes:	CO1 : L	earn about the	importanc	e of cleanliness			•					
	CO2: [CO2 : Develop skills in finding and solving sanitation related problems										
	CO3: 1	CO3: Motivating others not to litter										
CO4: Motivating		Motivating othe	ers not to use plastic bags									
CO5 : To manage and impler			mplement	t campaigns and demonstrate sanitation advice in nearby villages.								
CO6: Skill to train others												
				COURSE SYLL	ABUS							
Unit No.	Contents Contact Hrs								Contact Hrs.			
I-IV Th	nis course is applicable to all students to carry out various activities associated with cleanliness and							100				
re	ecycling o	ycling of the waste materials at departmental and university level in line with Swachh Bharat										
Ab	bhiyan th	nat may include:										
 To conduct outreach progr with NCC or NSS or wom To produce energy and ma 			ach progra 5 or wome	ims for creating awareness on Swachh Bharat in association en cell etc.								
			y and man	ure using bio-waste								
Plantation drives to increase				the green cover and								
	• Se	Self-sustainable units through energy production using solar panels.										
	• Pl	Plastic free environment.										
Development of Green B			ireen Builo	Buildings concept in the society.								
 Effective Waste managemer Rain water harvesting. 				nt and recycling.								
1		onar disnasal at	waste.									
	• Pr											
	 Pr Cr 	eating awarene	ss in the co	ommunity through s	hort film	S.						
	 Pr Cr Us 	eating awarene se of social medi	ss in the co ia for broa	ommunity through s der community outr	hort film each.	S.						
No	Pr Cr Cr Us ote: Stud	eating awarene se of social medi dents will submi	ss in the co ia for broa t a brief re	ommunity through s der community outr port on the activitie:	hort film each. s carried	s. out to t	he dep	partment	for the			

*https://www.ugc.ac.in/pdfnews/8118809_UGC-Letter-reg-Swachcha-Bharat-Abhiyan-.pdf

8. TEACHING-LEARNING PROCESS

- Lectures
- Discussions
- Simulations
- Role Playing
- Participative Learning
- Interactive Sessions
- Seminars
- Research-based Learning/Dissertation or Project Work
- Technology-embedded Learning
- Hands on training
- Self study analysis
- Report writing

9. IMPLEMENTATION OF BLENDED LEARNING

Blended Learning is a pedagogical approach that combines face to-face classroom methods with computer- mediated activities in the process of teaching and learning. It implies nice blend of face-to-face and online activities to make the learning processes more interesting and engaging. It focuses on integration of traditional classroom activities and innovative ICT-enabled strategies. It emphasizes student-centric learning environment where the teacher is the facilitator for productive and measurable learning outcomes. It optimizes and compliments the face to face learning, giving ample freedom and flexibility to the students and teachers to access and explore the wide range of open-access sources such as video lectures, podcasts, recordings and articles through digital platforms. It gives freedom and autonomy to the teachers in selection of appropriate digital platforms, resources and time-slotsto complement and supplement face to face learning. The Blended Learning doesn't undermine the role of the teacher, rather it gives him/her an opportunity to explore the unexplored in accordance with the requirements of the curriculum.

Key features of Blended Learning

- **Student-Centric Pedagogical Approach** focusing on flexibility in timing, quality content, needs and interests of students and freedom to study through the mode of his/her choice;
- Freedom to Select variety of mediums and techniques;
- Increased student engagement in learning;
- Enhanced teacher and student interaction;

- Improved student learning outcomes;
- More flexible teaching and learning environment;
- More responsive for self and continuous learning;
- Better opportunities for experiential learning;
- Increased learning skills;
- Greater access to information, improved satisfaction and learning outcomes.

Note: It was resolved that Blended Learning with 40% component of online teaching and 60% face to face classes for each programme, may be adopted

10. ASSESSMENT AND EVALUATION

Overall assessment will be made as per CUH PG ordinances

- Continuous Comprehensive Evaluation at regular after achievement of each Course-level learning outcome
- Formative Assessment on the basis of activities of a learner throughout the programme instead of one-time assessment
- Oral Examinations to test presentation and communication skills
- Open Book Examination for better understanding and application of the knowledge acquired if required
- Group Examinations on Problem solving exercises
- Seminar Presentations
- Review of Literature
- Collaborative Assignments

11. KEYWORDS

- LOCF
- NEP-2020
- Blended Learning
- Face to face (F to F) Learning
- Programme Outcomes
- Programme Specific Outcomes
- Course-level Learning Outcomes

- Postgraduate Attributes
- Learning Outcome Index
- Formative Assessment and Evaluation
- Comprehensive and Continuous Evaluation

12. REFERENCES

- National Education Policy-2020. <u>https://www.education.gov.in/sites/upload_files/mhrd/files/NEP_Final_English_0.pdf</u>
- The draft subject specific LOCF templates available on UGC website. <u>https://www.ugc.ac.in/ugc_notices.aspx?id=MjY50Q</u>==
- Draft Blended Mode of Teaching and Learning: Concept Note available on UGC website. https://www.ugc.ac.in/pdfnews/6100340 Concept-Note-Blended-Mode-of-Teaching-and-Learning.pdf

13. APPENDICES

Curricular Reforms — Extracts from National Education Policy-2020

8118809_UGC-Letter-reg-Swachcha-Bharat-Abhiyan-.pdf (https://www.ugc.ac.in/pdfnews/8118809_UGC-

Letter-reg-Swachcha-Bharat-Abhiyan-.pdf)

3258851_swach-bharat-swashth-bharat--guidelines-2014.pdf